
Determining the Distribution of Maintenance
Categories: Survey versus Empirical Study*

STEPHEN R. SCHACH srs@vuse.vanderbilt.edu
BO JIN bo.jin@vanderbilt.edu
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA

GILLIAN Z. HELLER gheller@efs.mq.edu.au
Department of Statistics, Macquarie University, Sydney, NSW 2109, Australia

A. JEFFERSON OFFUTT ofut@ise.gmu.edu
Department of Information and Software Engineering, George Mason University, Fairfax, VA 22030, USA

__

Please send all correspondence to:

Stephen R. Schach

Department of Electrical Engineering and Computer Science
Box 351679, Station B
Vanderbilt University
Nashville TN 37235-1679, U.S.A

Tel: (615) 322–2924
Fax: (615) 343–5459
E-mail:srs@vuse.vanderbilt.edu

* This work was sponsored in part by the National Science Foundation under grant number

CCR–0097056.

Distribution of Maintenance Categories Page 2

Abstract. In 1978, Lientz, Swanson, and Tompkins published the results of a survey on

software maintenance. They found that 17.4% of maintenance effort was categorized as

corrective in nature, 18.2% as adaptive, 60.3% as perfective, and 4.1% was categorized as other.

We refer to this result as “LST.” We contrast this survey-based result with our empirical results

from the analysis of data for the repeated maintenance of three software products: a commercial

real-time product, the Linux kernel, and GCC. For all three products and at both levels of

granularity we considered, our observed distributions of maintenance categories were

statistically very highly significantly different from LST. In particular, corrective maintenance

was always more than twice the LST value. For the summed data, the percentage of corrective

maintenance was more than three times the LST value. We suggest various explanations for the

observed differences, including inaccuracies on the part of the maintenance managers who

responded to the LST survey.

Keywords: maintenance categories; open-source software; repeated maintenance; real-time

product; Linux; GCC

1. Introduction

One of the most widely cited papers on software maintenance is “Characteristics of Application

Software Maintenance” (Lientz, Swanson, and Tompkins, 1978). The authors of that paper

analyzed 69 responses from maintenance managers to a 35-page questionnaire containing 50

different questions. Even though the survey was conducted more than 20 years ago, one result

from that survey continues to be quoted regularly, namely, the relative frequency of adaptive,

corrective, and perfective maintenance. For example, the latest editions of all three top-selling

textbooks in Software Engineering quote this result (Schach, 2002; Pressman, 2001;

Sommerville, 2001).

Distribution of Maintenance Categories Page 3

In more detail, Lientz, Swanson, and Tompkins stated that 17.4% of maintenance effort was

categorized as corrective in nature (“ emergency fixes, routine debugging”); 18.2% as adaptive

(“ accommodation of changes to data inputs and files and to hardware and system software”);

60.3% as perfective (“ user enhancements, improved documentation, recoding for computational

efficiency”); and 4.1% was categorized as “ other” (Lientz, Swanson, and Tompkins, 1978). For

brevity in what follows, we will refer to this result as “ LST.”

Although these results are valuable and useful, they are somewhat dated. Since the paper was

published in 1978, there have been considerable changes in the IT industry. We use many new

technologies, new processes and procedures to design and develop software, and there are

numerous new types of applications. One of the major changes is that software systems now

heavily rely on reuse, which has direct impacts on maintenance. Thus, we have decided to revisit

the categorization of maintenance changes.

We have recently compiled detailed data for the repeated maintenance of three software

products: RTP, a widely used commercial real-time product (Wang, Schach, and Heller, 2001);

Linux, the open-source operating system (Linux Online, 2000); and GCC, the open-source set of

compilers (GCC Home Page, 2001). One of the items we measured was the distribution of

maintenance categories. We fully expected that our results would be in accordance with LST.

Much to our surprise, the distributions we observed were vastly different from LST.

We therefore felt that it would be appropriate to carefully reexamine LST. For example,

suppose that a software organization is devoting 50% of its maintenance effort to corrective

maintenance. If LST is correct then the number of faults in the software developed by that

organization is unacceptably high. But if the results presented in this paper can be validated for

Distribution of Maintenance Categories Page 4

software as a whole, then the number of faults is slightly below average. LST is widely

accepted, so correcting LST could have major implications for the management of maintenance.

Previous work in this area includes (Nosek and Palvia, 1990), in which results similar to LST

were obtained when the same questionnaire was sent out 10 years later. Results of automatic

categorization of maintenance performed on a real-time software system are described in

(Mockus and Votta, 2000). Unfortunately, the maintenance categorization used in that paper is

inconsistent with other papers, so the results are hard to compare. For example, (Mockus and

Votta, 2000) uses the term “ adaptive maintenance” to mean “ adding new features.” They also

introduce additional categories, such as “ inspection maintenance” (the result of a code

inspection).

In Section 2, we discuss possible granularities for measuring maintenance categories, and in

Section 3, we describe the granularities we used in this study. Sections 4, 5, and 6 contain our

maintenance data for RTP, Linux, and GCC, respectively. In Section 7, we discuss LST. Our

conclusions are in Section 8.

2. Granularity of Maintenance Category Data Measurement

Suppose we wish to categorize maintenance activities as adaptive, corrective, perfective, or

other. This categorization can be performed on the basis of measurements at various levels of

granularity, including the line of code level, change-log level, module level, and program level.

At the end of this section, we contrast measurements made at these levels of granularity with the

approach used in determining LST.

Distribution of Maintenance Categories Page 5

2.1 Line of Code Level

Using a utility like diff, each line that was changed (inserted, modified, or deleted) in the course

of producing a new version of the program is flagged. Then, the category of the change to that

line is determined by examining the change and deciding whether it is adaptive, corrective, or

perfective. This level of categorization clearly provides maximal information regarding the

nature of the maintenance performed. A disadvantage is that we have found that gathering data

at this level of granularity is exceedingly time consuming. Also, it can be hard to analyze such

changes statistically when the number of lines of code decreases from one version to the next,

especially when the decrease is large. For example, version 2.3.31 of Linux kernel module

Sched.c has 2090 lines of code, whereas version 2.3.32 has only 1420 lines of code, a 32%

decrease.

2.2 Change-Log Level

Typically, a change log consists of entries like “ warn the user that all but four cases have

been disabled” or “ prevent an endless loop when –1 is stored in the hash table.” At the

change-log level, each entry in the change log is considered as one unit of maintenance on the

module in question and recorded on that basis. A strength of this approach is that it reflects the

maintenance programmers’ view of the different activities that were performed. The major

weakness is that it does not distinguish between correcting just one line of one comment within

one module (which we have actually observed), and completely rewriting a large module to

correct a critical fault in the logic of that module. Both maintenance operations would be

recorded as one corrective change-log level modification to the relevant module.

Distribution of Maintenance Categories Page 6

Our experience is that the change-log level is the lowest practical level of granularity for

gathering data for a nontrivial program.

2.3 Module Level

At the change-log level, as explained in the previous section, each entry in the change log

constitutes one unit of maintenance on the module in question. At the module level, we treat all

the changes made to a module as a single unit of maintenance on that module. If all the changes

made to a specific module are (say) adaptive, then we classify that unit of maintenance as

adaptive. However, if at least one change is (say) corrective, then we classify the maintenance as

adaptive/corrective. Then, for the purpose of statistical analysis, the set of changes to that

module are deemed to be half adaptive and half corrective. A disadvantage is that this may not

be an accurate measure of the relative effort when maintenance of more than one category is

performed on a module.

2.4 Program Level

Here we consider the program as a whole and treat all the changes made from one version to the

next as one unit of maintenance. As with module level categorization, we then categorize the

change to a program as (say) adaptive or (say) adaptive/perfective. The strength of this approach

is that we get the “ big picture.” The major weakness is that the resulting data do not indicate the

scale of the change, for example, how many modules were changed, let alone the extent of the

changes to each module. As with module level categorization, there is also the problem of how

to treat (say) adaptive/corrective/perfective maintenance accurately; the assumption that equal

effort was devoted to adaptive, corrective, and perfective maintenance may not be a fair

reflection of what was actually done.

Distribution of Maintenance Categories Page 7

2.5 Approach Used to Determine LST

As explained in Section 6, Lientz, Swanson, and Tompkins asked maintenance managers to

estimate the percentage of time devoted to each of the maintenance categories at the overall

organizational level. That is, no measurements as such were performed. Instead, managers

estimated how much time was devoted to each category within the organization as a whole, and

then stated how confident they felt about their estimate.

3. Methodology

For RTP (Section 4), we measured the maintenance categories at only the module level. In the

case of Linux and GCC (Sections 5 and 6), we measured the maintenance categories at both the

module level and the change-log level in order to determine whether the lower level of

granularity would provide additional insights regarding repeated maintenance. In this paper, we

report on all the distribution data we obtained at both the module level and the change-log level.

For many software products, there is no change log as such. In such cases, entries similar to

those of change logs are sometimes found as comments in the code; this is how changes to RTP

are notated. When neither a change log nor comments were available (as, for example, with

much of Linux), we used diff to find what changes had been made and then constructed the

change log on the basis of the changes to the code.

We now present our results on the repeated maintenance of RTP, Linux, and GCC, in each

case identifying the level of granularity of the maintenance data that we extracted.

4. Repeated Maintenance of RTP

We have analyzed the repeated maintenance of RTP, a widely used PC-based commercial real-

time product written in a combination of Assembler and C. The size of the product is about 12

Distribution of Maintenance Categories Page 8

KLOC. Procedures are grouped into 10 files; seven of the files consist of Assembler procedures

and the other three contain C functions. We were provided with 148 versions of those 10 files,

that is, the 10 original versions plus 138 modified versions created between 1987 and 1996 (for

reasons of trade secrecy, we were not given access to the latest versions). Our complete results

may be found in a companion paper (Wang, Schach, and Heller, 2001). Table I contains module

level data for the 138 modified versions.

The chi-square test (Weiss, 1995) was used to compare the observed distribution of

maintenance categories with the distribution expected according to LST. As can be seen from

Table I, the probability that the distribution of maintenance categories we observed was drawn

from a population distributed according to LST is < 0.001. That is, statistically the distribution

of maintenance categories that we have observed is very highly significantly different from that

in LST.

5. Repeated Maintenance of the Linux Kernel

We then examined 391 versions of Linux, from version 1.0 through version 2.3.51 (Schach, Jin,

Wright, Heller, and Offutt, 2001). We concentrated our efforts on the Linux kernel because

there are only 17 kernel modules and 6,506 versions of those modules; in contrast, the current

version of Linux has nearly 2,000 modules, and there are up to 390 previous versions of each of

those modules. In other words, our Linux maintenance research project was manageable because

we restricted our efforts to measuring various aspects of “ only” 6,506 modules.

Here we report on both module level and change-log level data, as explained in Section 2.3.

(As stated in Section 3, we constructed the change log from the changes to the source code.) We

were particularly interested to determine whether the maintenance phase can be divided into

subphases, so we considered the first 20 versions, the middle 20 versions, and the last 20

Distribution of Maintenance Categories Page 9

versions of the 391 versions of Linux at our disposal. Here we present the result of comparing

each set of 20 versions against the LST distribution. The module level data are shown in Table

II, and the change-log level data in Table III. (In Table II, two of the “ observed numbers” are

fractions. This is because the 15 instances of corrective/perfective maintenance at the module

level are treated as 7.5 instances of corrective maintenance and 7.5 of perfective maintenance, as

explained in Section 2.3.)

Chi-square tests were again used to compare the observed distributions of maintenance

categories with the distribution expected according to LST. As can be seen from the tables, in all

cases the probability that an observed distribution came from a population with the LST

distribution is < 0.001. We again deduce that the observed distribution of maintenance

categories is statistically very highly significantly different from the LST distribution.

6. Repeated Maintenance of GCC

Next, we examined versions 2.4.0 through 2.7.2.3 of GCC (“ GNU Compiler Collection”), a set

of open-source compilers for C, C++, Fortran, Objective C, and other languages, published by

the Free Software Foundation (GCC Home Page, 2001). The current version of the source code

consists of over 1,000 modules totaling nearly 850,000 lines of code. Just under 200 of the

modules are procedural C code (.c) and just under 500 are C header modules (.h).

Again, we report on both module level and change-log level data, for the reason given in

Section 3. Also, as with Linux, we wanted to determine whether or not the maintenance phase

can be divided into subphases, so we considered the first 5 versions, the middle 5 versions, and

the last 5 versions of GCC. Unlike the Linux data, in the case of GCC we did have access to a

change log. The module level data are shown in Table IV, and the change-log level data in Table

V.

Distribution of Maintenance Categories Page 10

Once again using chi-square tests, we deduce that, as in the case of Linux and RTP, the

observed distribution of maintenance categories is statistically very highly significantly different

from that expected according to LST.

Figures 1 and 2 summarize the results of Sections 4, 5, and 6. Figure 1 shows the distribution

of maintenance categories at the module level, and Figure 2 shows the distribution at the change-

log level.

7. Discussion

We have observed significantly more corrective maintenance than LST, and less adaptive and

perfective maintenance. Table VI shows the comparisons for the nonweighted sum of our data,

at both the module level and the change-log level.

It should come as no surprise that the observed distributions of the maintenance types are

different from the values predicted by LST. After all, the LST distribution was derived from a

survey, whereas the distributions presented in this paper are empirical results obtained by

measuring the source code itself.

What is surprising, however, is that the two distributions are so utterly different. When the

same result is obtained in two different ways (from a survey and from measurements, in this

instance), we do not anticipate that the two answers will be identical, but we would certainly

expect that the two answers would show some similarity. Referring again to Table VI, according

to the LST survey 17.4% of time is devoted to corrective maintenance, whereas the summed data

reflects 53.4% (module level) and 56.7% (change-log level), more than three times the LST

value. This huge discrepancy between the measured results and the results of the LST survey

needs to be understood.

Distribution of Maintenance Categories Page 11

One possible explanation is the LST values were obtained from data processing software, not

operating systems or compilers. However, RTP is a commercial real-time product. In passing,

only one of the three top-selling software engineering textbooks (Schach, 2002; Pressman, 2001;

Sommerville, 2001) points out that LST cannot necessarily be extrapolated to all types of

software; (Sommerville, 2001) restricts the result to “ custom software.” Furthermore, all three

textbooks imply that the LST result still holds, over 20 years later.

Another possible explanation is that the nature of software development has changed since

1978 as a consequence of the transition to the object-oriented paradigm. However, RTP was

started in 1987, Linux in 1991, and GCC in 1985, and none of them was designed or developed

as object-oriented software.

A third possible explanation for the vast discrepancy is that the LST values appertain to effort,

whereas our results relate to the number of changes of each type. Graves and Mockus (Graves

and Mockus, 1998) found that the effort in performing corrective maintenance is about 1.8 times

greater than for comparably sized perfective maintenance. In view of the fact that all our

observed percentages for corrective maintenance are already more than twice as large as the

percentages predicted by LST, converting our numerical data to effort data on the basis of

Graves and Mockus’s conversion factor would only make the discrepancies with LST

considerably worse. (In passing, we did not recompute our results on the basis of effort because

we do not have a conversion factor for adaptive maintenance.)

A fourth possible explanation is that participants in the survey from which the LST data were

derived simply did not have adequate data to respond to the survey. The participating software

maintenance managers were asked whether their response to each question was based on

reasonably accurate data, minimal data, or no data. In the case of the LST question, 49.3% stated

Distribution of Maintenance Categories Page 12

that their answer was based on reasonably accurate data, 37.7% on minimal data, and 8.7% on no

data. In fact, we seriously question whether any respondents had “ reasonably accurate data”

regarding the percentage of time devoted to the categories of maintenance included in the survey,

and most of them may not have had even “ minimal data.” In the survey, participants were asked

to state what percentage of maintenance consisted of items like “ emergency fixes” or “ routine

debugging” ; from this raw information, the percentage of adaptive, corrective, and perfective

maintenance was computed. Software engineering was just starting to emerge as a discipline in

1978, and it was the exception for software maintenance managers to collect the detailed

information needed. Indeed, in modern terminology, in 1978 most organizations were still at

CMM level 1. There is also the issue of the time needed to collect maintenance data. It took us

3 weeks to analyze various aspects of the changes to the 138 versions of RTP we investigated,

and over 9 months to analyze the 6,506 Linux versions. Today, CASE environments are used in

software development and maintenance, and these environments can assist in data collection.

Nevertheless, our experience has been that, even when such CASE environments are used,

software engineers are reluctant in the extreme to spend even a minute or two entering

information that they do not view as relevant to their day-to-day tasks, even when their managers

have mandated this data collection. In 1978, before such CASE tools existed, it seems most

unlikely that software maintenance managers would have much in the way of “ reasonably

accurate” maintenance data of any kind.

A fifth possible reason is that the managers did not tell the truth when responding to the

survey. After all, corrective maintenance is performed to fix a fault; had the software been better

developed, the fault would not have been present. Even though the managers were promised

anonymity, it is possible that they wanted to paint their companies in a good light.

Distribution of Maintenance Categories Page 13

8. Conclusions and Future work

We have examined maintenance data from three different sources, namely, RTP, a commercial

real-time program, and Linux and GCC, two open-source programs. In all three cases, the

distribution of maintenance categories was statistically very highly significantly different from

the distribution described in (Lientz, Swanson, and Tompkins, 1978). In particular, in every case

the percentage of corrective maintenance was at least twice as large as predicted, and three times

larger for the summed data.

We then reexamined the part of the survey conducted by Lientz, Swanson, and Tompkins that

relates to the distribution of maintenance categories. We are skeptical about the accuracy of the

responses of the managers who participated in the survey. Furthermore, we seriously doubt that

the results of a survey of software managers can ever be as accurate as empirical results based on

measurements of the software itself.

We are currently examining the repeated maintenance of other software products to obtain

more actual data on the distribution of maintenance categories.

References

GCC Home Page – GNU Project – Free Software Foundation (FSF),

http://www.gnu.org/software/gcc/gcc.html, October 12, 2001.

Graves T.L. and Mockus A. 1998. Inferring change effort from configuration management data.

Proceedings of the Fifth International Symposium on Software Metrics, Bethesda, MD,

267–273.

Lientz B.P., Swanson E.B. and Tompkins G.E. 1978. Characteristics of application software

maintenance. Communications of the ACM 21(6): 466–471.

Distribution of Maintenance Categories Page 14

Linux Online – About the Linux operating system, http://www.linux.org/info/index.html, March

6, 2000.

Mockus A. and Votta L. 2000. Identifying reasons for software changes using historic

databases. Proceedings of the 2000 International Conference on Software Maintenance.

San Jose, CA, 120–130.

Nosek J.T. and Palvia P. 1990. Software maintenance management: Changes in the last decade.

Journal of Software Maintenance: Research and Practice 2(3): 157–174.

Pressman R.S. 2001. Software Engineering, A Practitioner’s Approach. McGraw-Hill: Boston

MA, 5th edition: 805.

Schach S.R. 2002. Object-Oriented and Classical Software Engineering. WCB/McGraw-Hill:

Boston MA, 5th edition: 10, 181–189, 426.

Schach S.R., Jin B., Wright D.R., Heller G.Z., Offutt A.J. 2002. Maintainability of the Linux

kernel. IEE Proceedings—Software, to appear.

Sommerville I. 2001. Software Engineering. Addison-Wesley: Harlow, UK, 6th edition: 606.

Wang S., Schach S.R. and Heller G.Z. 2001. A case study in repeated maintenance. Journal of

Software Maintenance and Evolution: Research and Practice 13(2): 127–141.

Weiss N.A. 1995. Introductory Statistics. Addison-Wesley: Reading, MA, 4th edition.

Distribution of Maintenance Categories Page 15

LIST OF TABLES

Table I. Module level data for the 138 changed modules of RTP.

Table II. Data at the module level for the first 20, middle 20, and last 20 versions of the Linux
kernel.

Table III. Data at the change-log level for the first 20, middle 20, and last 20 versions of the
Linux kernel.

Table IV. Data at the module level for the first 5, middle 5, and last 5 versions of GCC.

Table V. Data at the change-log level for the first 5, middle 5, and last 5 versions of GCC.

Table VI. Comparison between the summed data of Tables I through V and LST.

Distribution of Maintenance Categories Page 16

Table I. Module level data for the 138 changed modules of RTP.

Maintenance category Observed number Observed percentages Expected percentages (LST)
Adaptive 19 13.8% 18.2%
Corrective 59 42.8% 17.4%
Perfective 37 26.8% 60.3%
Other 23 16.7% 4.1%
Chi-square test P < 0.001

Distribution of Maintenance Categories Page 17

Table II. Data at the module level for the first 20, middle 20, and last 20 versions of the Linux
kernel.

 First 20 versions Middle 20 versions Last 20 versions
Maintenance

Category
Observed
number

Observed
percentages

Observed
number

Observed
percentages

Observed
number

Observed
percentages

Expected
percentages

(LST)
Adaptive 2 2.2% 0 0.0% 0 0.0% 18.2%
Corrective 48 53.3% 42 73.7% 30.5 50.8% 17.4%
Perfective 34 37.8% 11 19.3% 25.5 42.5% 60.3%
Other 6 6.7% 4 7.0% 4 6.7% 4.1%
Chi-square
test

P < 0.001

P < 0.001

P < 0.001

Distribution of Maintenance Categories Page 18

Table III. Data at the change-log level for the first 20, middle 20, and last 20 versions of the
Linux kernel.

 First 20 versions Middle 20 versions Last 20 versions
Maintenance

Category
Observed
number

Observed
percentages

Observed
number

Observed
percentages

Observed
number

Observed
percentages

Expected
percentages

(LST)
Adaptive 2 0.9% 0 0.0% 0 0.0% 18.2%
Corrective 87 40.5% 151 78.6% 75 53.6% 17.4%
Perfective 115 53.5% 37 19.3% 61 43.6% 60.3%
Other 11 5.1% 4 2.1% 4 2.9% 4.1%
Chi-square
test

P < 0.001

P < 0.001

P < 0.001

Distribution of Maintenance Categories Page 19

Table IV. Data at the module level for the first 5, middle 5, and last 5 versions of GCC.

 First 5 versions Middle 5 versions Last 5 versions
Maintenance

Category
Observed
number

Observed
percentages

Observed
number

Observed
percentages

Observed
number

Observed
percentages

Expected
percentages

(LST)
Adaptive 1.833 1.0% 3.5 3.3% 4.333 6.3% 18.2%
Corrective 87.833 50.2% 56.5 53.8% 46.833 67.9% 17.4%
Perfective 85.333 48.8% 42 40.0% 17.833 25.8% 60.3%
Other 0 0.0% 3 2.9% 0 0.0% 4.1%
Chi-square
test

P < 0.001

P < 0.001

P < 0.001

Distribution of Maintenance Categories Page 20

Table V. Data at the change-log level for the first 5, middle 5, and last 5 versions of GCC.

 First 5 versions Middle 5 versions Last 5 versions

Maintenance
Category

Observed
number

Observed
percentages

Observed
number

Observed
percentages

Observed
number

Observed
percentages

Expected
percentages

(LST)
Adaptive 3 1.0% 8 3.9% 13 11.8% 18.2%
Corrective 155 51.5% 117 57.1% 74 67.3% 17.4%
Perfective 143 47.5% 75 36.6% 23 20.9% 60.3%
Other 0 0.0% 5 2.4% 0 0.0% 4.1%
Chi-square
test

P < 0.001

P < 0.001

P < 0.001

Distribution of Maintenance Categories Page 21

Table VI. Comparison between the summed data of Tables I through V and LST.

Maintenance Category

Module level
percentages

Change-log level
percentages

LST
percentages

Adaptive 4.4% 2.2% 18.2%
Corrective 53.4% 56.7% 17.4%
Perfective 36.4% 39.0% 60.3%
Other 0.0% 2.4% 4.1%

Distribution of Maintenance Categories Page 22

List of Figures

Figure 1. Distribution of maintenance categories at the module level.

Figure 2. Distribution of maintenance categories at the change-log level.

Distribution of Maintenance Categories Page 23

Figure 1. Distribution of maintenance categories at the module level.

0%

20%

40%

60%

80%

100%

LS
T

RTP

Lin
ux f

irs
t 2

0

Lin
ux m

iddl
e

20

Lin
ux l

as
t 2

0

G
CC fi

rs
t 5

G
CC m

id
dle

 5

G
CC la

st
5

P
er

ce
n

ta
g

e O ther

Perfec tive

Adaptive

Corrective

Distribution of Maintenance Categories Page 24

Figure 2. Distribution of maintenance categories at the change-log level.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LST

Linux f
irs

t 2
0

Lin
ux m

idd
le

 2
0

Linu
x l

as
t 2

0

GCC fir
st

5

GCC m
idd

le
5

GCC la
st

 5

Other

Perfective

Adaptive

Corrective

