
Introduction to the
Personal Software Process

A Simple Guide
To Managed

Software Development

B.J. Johnson
2009-11-13



2009-11-13 2

Agenda

 What is PSP?
 Highlight Reel
 Baseline Process
 Some Basic Concepts
 PROBE
 Example steps
 Summary & Questions



2009-11-13 3

So, To Business . . .

 Personal Software Process is:
 A disciplined, data-driven approach
 A way to apply CMMI principles
 Focused on single developer
 Method for improving planning skills
 Method for improving estimation skills
 Method for reducing defects

 Goal is to produce quality, defect-
free software, delivered on schedule



2009-11-13 4

PSP Isn’t Really New

 Invented by Watts Humphrey
 Joined SEI in 1986
 Led S/W CMM development at SEI
 Published PSP book in 1995 (hold up book here)

 PSP/TSP subsequently taken over by SEI
 Training course available through SEI
 Also taught at USC by Jim Alstad of BSS

 Lesson materials are available
 From SEI/Carnegie-Mellon
 Free download (for students only)
 ZIP file contains slides and materials



2009-11-13 5

Why Do We Need It?

 By some accounts:
 over half of all software projects are 

significantly late and over budget
 nearly a quarter of them are cancelled 

without ever being completed
 Even the best of us can make errors

 Bugs may be hard to find
 Bugs in production are expensive to fix
 Large programs decrease productivity



2009-11-13 6

Carnegie Mellon Slide Says:

0
1
10
100

1,000
10,000
100,000

1,000,000
10,000,000

19
60
19
65
19
70
19
75
19
80
19
85
19
90
19
95
20
00

Years

Si
ze

 in
 K

LO
C

Moore’s Law:
2X in 18 months
10X in 5 years

Software Products are Bigger

Space
IBM
NT
TV
Trend

© 2006 by Carnegie Mellon University



2009-11-13 7

What Can PSP Buy You?

 Insight into your process
 Ideas for process improvements
 Framework to implement improvement
 Control over your process
 Sense of accomplishment
 Sense of improved teamwork



2009-11-13 8

Highlights of PSP

 Matches up with CMMI Levels
 Has levels of implementation
 Based on real-world metrics
 Covers all parts of software process

 Planning, estimation and design
 Coding and reviews
 Testing and “post-mortem” metrics

 Scripts tell you what to do
 Templates tell you how to do it
 Forms help you track progress



2009-11-13 9

Level Up For Success …

PSP1
Size estimating

Test report

PSP2
Code reviews

Design reviews

TSP
Team development

PSP2.1
Design templates

PSP1.1
Task planning

Schedule planning

PSP0
Current process
Time recording

Defect recording
Defect type standard

PSP0.1
Coding standard

Size measurement
Process improvement

proposal (PIP)

CMMI Level 3

CMMI Level 4

CMMI Level 5

© 2006 by Carnegie Mellon University



2009-11-13 10

PSP Levels Zero &One

 PSP 0 (the baseline)
 Your current process
 Adding measurements
 Coding/defect standards (in 0.1)

 PSP 1 (personal planning)
 Test reporting
 Size/resource estimation
 Task/schedule planning (in 1.1)



2009-11-13 11

PSP Levels Two & Three

 PSP 2 (quality management)
 Design reviews
 Code reviews
 Design completeness (in 2.1)

 PSP 3 (cyclic development)
 Divide and conquer approach
 Functional decomposition
 Tracking of all cycles
 A.K.A. Team Software Process



2009-11-13 12

Cover the Baseline; PSP 0

 What we’ll cover today
 Build around your existing process
 May be something like:

 Get some requirements/think about them
 Maybe make some working notes
 Start coding/debugging
 Integrate the parts
 Test the product
 Release the product/write documentation
 Fix bugs forever



2009-11-13 13

Carnegie Mellon Slide:

The PSP Process Flow
Requirements

Finished product

Project
summary

Project and process
data summary report

Planning

Design

Code

Compile

Test

PM

Scripts guide Logs

Requirements

Finished product

Project
summary

Project and process
data summary report

Planning

Design

Code

Compile

Test

PM

Scripts guide LogsLogs

© 2006 by Carnegie Mellon University



2009-11-13 14

Time Recording

 Record numbers of minutes
 Log everything you do
 Even track non-productive time

 Preparing/filling in forms
 Looking up code on the web
 Break times
 Interruptions



2009-11-13 15

Time Recording Log

 TRL example goes here



2009-11-13 16

Defect Recording

 Start with basic defects
 Defects assigned numeric values
 Much like what is on Boeing Code 

Review sheets
 10 = documentation error
 20 = syntax error
 30 = packaging error
 Etc.



2009-11-13 17

Defect Recording Log

 drl example goes here



2009-11-13 18

Project Plan Summary

 This is where you enter your numbers
 Tracks each project phase
 Tracks both estimated and actual
 Contains calculated totals
 Higher PSP levels have more stuff to 

calculate and track



2009-11-13 19

Project Plan Summary

 pps example goes here



2009-11-13 20

Formalize Your Baseline

 Planning
 Design
 Code
 Compile
 Test / Debug
 Add a “post-mortem” step



2009-11-13 21

So, How Do We Estimate?

 Welcome to PROBE!
 PROxy Based Estimation
 Uses a table of values based on the 

different types of functions/objects
 All estimations based on SLOC
 Logical vs. Physical SLOC counting
 Different languages have different 

SLOC for the same functions
 See SEI definitions



2009-11-13 22

The Book C++ PROBE Table

C++ Object Size in LOC per Method
Category Very

Small
Small Medium Large Very

Large
Calculation 2.34 5.13 11.25 24.66 54.04

Data 2.60 4.79 8.84 16.31 30.09

I/O 9.01 12.06 16.15 21.62 28.93

Logic 7.55 10.98 15.98 23.25 33.83

Set-up 3.88 5.04 6.56 8.53 11.09

Text 3.75 8.00 17.07 36.41 77.66



2009-11-13 23

So, Step One … Pre-plan

 Read the requirements
 UNDERSTAND the requirements
 Check the scripts
 Set up your templates
 Create a “conceptual design”

 Like an architectural level design
 Functions/objects are itemized
 Shouldn’t take more than ½ hour for most 

programs



2009-11-13 24

Step Two … Planning

 Check the PROBE table and figure out 
the lines of code needed

 If starting from an existing program, 
separate out and count deleted, 
changed, added, modified LOC

 Calculate the total number of LOC
 This is your estimated LOC count
 Enter info into Project Plan Summary 

form
 Enter time into Time Recording Log 



2009-11-13 25

Step Three … Design Phase

 Now, create an actual design for the 
project

 Use functional decomposition
 Modify the Project Plan Summary form 

entries if necessary
 Enter time in the Time Recording Log



2009-11-13 26

Step Four … Code (at last!)

 Write the code
 Don’t compile it yet!!!

 This is counter-intuitive to usual practice
 We almost always compile as we go, but 

NOT for PSP!!!
 Critical to later steps and to higher PSP 

levels
 Fill out Time Recording Log 



2009-11-13 27

Step Five … Compile It

 Compile all your code modules
 Log all your defects to the Defect Recording 

Log
 Log as much detail as you can:

 Line numbers
 Compile error codes and messages
 This is where syntax errors will show up
 Use cut-and-paste if you want

 Critical to later PSP levels and to your 
development

 Fill out Time Recording Log 



2009-11-13 28

Step Six … Test Your Code

 When things break, these are defects
 Log them to the Defect Recording Log
 Fix the defects and re-test
 Keep doing this until they are all gone
 This is where logic errors will show up
 Fill out Time Recording Log



2009-11-13 29

Step Seven … Post-mortem

 You now have a completed program
 This is where your metrics come in
 Record the actual time required for 

each phase from the Time Recording 
Log on the Project Plan Summary form

 Figure out (and record!) percent of 
total time each phase took

 Enter the actuals for all LOC categories
 Figure out LOC/hour



2009-11-13 30

For The Next Project

 You now have one project’s data
 Next project, use the percents needed 

for each phase to help calculate times
 When you have three projects 

recorded, you can use linear 
regression to estimate time

 y = mx + b, just like in algebra!
 The x values are the actual values
 The y values will be the predicted values



2009-11-13 31

How Do I Get “m” and “b”?

 PSP calls them “Betas”
 β0 is the “b” or intercept
 β1 is the “m” or slope

 You MUST have at least three 
programs’ worth of historical data to 
use regression!!!

 If you don’t, use total LOC divided by 
LOC/hour to estimate time required



2009-11-13 32

More On Regression

 There’s lots of statistics involved
 Standard deviation
 Variance
 Prediction intervals
 Etc.

 There are spreadsheets available to do 
the calculations

 Check the SEI website for more details 



2009-11-13 33

…And Finally …

 Process Improvement
 This is what happens when moving from 

level to level in PSP
 Adding additional parts to the process
 Adding additional tracking metrics

 PSP allows for PPDP which is Personal 
Process Development Process!!



2009-11-13 34

More Information/Training

 You can download a complete set of 
student training materials from the 
SEI website

 It’s in an 8 Meg zip file so you may 
need to do it from home

 You give them your address info in an 
online form and you can download it

 Go to:
http://www.sei.cmu.edu/tsp/tools/stu
dent/index.cfm



2009-11-13 35

Thank You So Much!


