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Chapter 6: Architectural Design 
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Key Takeaway Points 

• The software architecture of a system or subsystem 

refers to the style of design of the structure of the 

system including the interfacing and interaction 

among its subsystems and components. 

• Different types of systems require different design 

methods and architectural styles. 

• Guidelines for Architectural Design 
1. Adapt an architectural style when possible. 

2. Apply software design principles. 

3. Apply design patterns. 

4. Check against design objectives and design principles. 

5. Iterate the steps if needed. 
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Architectural Design Considerations 

• Ease of change and maintenance.  

• Use of commercial off-the-shelf (COTS) parts.  

• System performance – does the system require 

to process real-time data or a huge volume of 

transactions? 

• Reliability.  

• Security.  

• Software fault tolerance.  

• Recovery.  
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Four Common Types of Systems 
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Characteristics of Interactive Systems 

• The interaction between system and actor consists of a 
relatively fixed sequence of actor requests and system 
responses. 

• The system has to process and respond to each request. 

• Often, the system interacts with only one actor during the 
process of a use case. 

• The actor is often a human being although it can also be a 
device or another subsystem. 

• The interaction begins and ends with the actor. 

• The actor and the system exhibit a “client-server” 
relationship.  

• System state reflects the progress of the business process 
represented by the use case. 
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Characteristics of Event-Driven Systems 

• It receives events from, and controls external entities. 

• It does not have a fixed sequence of incoming requests; 
requests arrive at the system randomly. 

• It does not need to respond to every incoming event. Its 
response is state dependent—the same event may result in 
different responses depending on system state.  

• It interacts with more than one external entity at the same 
time. 

• External entities are often hardware devices or software 
components rather than human beings. 

• Its state may not reflect the progress of a computation.  

• It may need to meet timing constraints, temporal 
constraints, and timed temporal constraints. 
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Characteristics of Transformational Systems 

• Transformational systems consist of a network of 
information-processing activities, transforming 
activity input to activity output. 

• Activities may involve control flows that exhibit 
sequencing, conditional branching, parallel threads, 
synchronous and asynchronous behavior. 

• During the transformation of the input into the output, 
there is little or no interaction between system and 
actor—it is a batch process. 

• Transformational systems are usually stateless. 

• Transformational systems may perform number 
crunching or computation intensive algorithms. 

• The actors can be human beings, devices, or other 
systems. 
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Characteristics of Object-Persistence Systems 

• It  provides object storage and retrieval 

capabilities to other subsystems. 

• It hides the implementation from the rest of the 

system. 

• It is responsible only for storing and retrieving 

objects, and does little or no business 

processing except performance considerations. 

• It is capable of efficient storage, retrieval, and 

updating of a huge amount of structured and 

complex data. 
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Class Discussion 

• Find examples of  

– interactive systems 

– event-driven systems 

– transformational systems, and 

– object-persistence systems 

• Show that the example systems possess the 

properties listed on previous slides, 

respectively. 

• Why do different types of systems require 

different design methods? 
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System Types and Architectural Styles 

Type of System Architectural Style 

Interactive System N-Tier 

Event-Driven System Event-Driven 

Transformational System Main Program and 

Subroutines 

Object-Persistence 

Subsystem 

Persistence Framework 

Client-server  Client-server 

Distributed, decentralized Peer-to-peer 

Heuristic problem-solving Blackboard 
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N-Tier Architecture 
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Client-Server Architecture 
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Main Program and Subroutine Architecture 
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Event-Driven Architecture 
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Object-Persistence Framework 
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Perform Custom Architectural Design 

• Remember: Not all application systems 

development projects can reuse an existing 

architectural style. 

• Custom architectural design may be required 

to meet the needs of a specific system. 

• Design patterns and COTS products are useful 

for custom architectural design. 
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Architectural Style and Package Diagram 
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Applying Software Design Principles 

• Design for Change – design with a “built-in 

mechanism” to adapt to, or facilitate 

anticipated changes.  

• Separation of Concerns – focusing on one 

aspect of the problem in isolation rather than 

tackling all aspects simultaneously. 

• Information Hiding – shielding 

implementation detail of a module to reduce its 

change impact to other parts of the software 

system.  
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Applying Software Design Principles 

• High Cohesion – achieving a higher degree of 

relevance of the functions of a module to the 

module’s core functionality.  

• Low Coupling – reducing the run-time effect 

and change impact of a subsystem to other 

subsystems.  

• KISS: Keep It Simple/Stupid – designing 

“stupid objects.” 

 


