
Object-Oriented Software Engineering: An Agile Unified Methodology by David Kung

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

Chapter 6: Architectural Design

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-2

Key Takeaway Points

• The software architecture of a system or subsystem

refers to the style of design of the structure of the

system including the interfacing and interaction

among its subsystems and components.

• Different types of systems require different design

methods and architectural styles.

• Guidelines for Architectural Design
1. Adapt an architectural style when possible.

2. Apply software design principles.

3. Apply design patterns.

4. Check against design objectives and design principles.

5. Iterate the steps if needed.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-3

feedback

Architectural Design Process

Review the

Architectur

al Design

Specify Subsystem

Functions, Interfaces

& Interaction

Behavior

Determine

Design

Objectives

Determine

Type of

System

Apply an

Architectur

al Style

Perform

Custom

Architectural

Design

Types of

System &

Characteristics

Architectural

Styles

Repository

design

objectives

[architectural

style available]

[architectural style

not available]

partial design

partial design

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-4

Architectural Design Considerations

• Ease of change and maintenance.

• Use of commercial off-the-shelf (COTS) parts.

• System performance – does the system require

to process real-time data or a huge volume of

transactions?

• Reliability.

• Security.

• Software fault tolerance.

• Recovery.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-5

Four Common Types of Systems

(a) Interactive subsystem

a

b

c

c

z

y x

a

a/x

b/y c/z

b

(b) Event-driven subsystem

(c) Transformational subsystem (d) Database subsystem

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-6

Characteristics of Interactive Systems

• The interaction between system and actor consists of a
relatively fixed sequence of actor requests and system
responses.

• The system has to process and respond to each request.

• Often, the system interacts with only one actor during the
process of a use case.

• The actor is often a human being although it can also be a
device or another subsystem.

• The interaction begins and ends with the actor.

• The actor and the system exhibit a “client-server”
relationship.

• System state reflects the progress of the business process
represented by the use case.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-7

Characteristics of Event-Driven Systems

• It receives events from, and controls external entities.

• It does not have a fixed sequence of incoming requests;
requests arrive at the system randomly.

• It does not need to respond to every incoming event. Its
response is state dependent—the same event may result in
different responses depending on system state.

• It interacts with more than one external entity at the same
time.

• External entities are often hardware devices or software
components rather than human beings.

• Its state may not reflect the progress of a computation.

• It may need to meet timing constraints, temporal
constraints, and timed temporal constraints.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-8

Characteristics of Transformational Systems

• Transformational systems consist of a network of
information-processing activities, transforming
activity input to activity output.

• Activities may involve control flows that exhibit
sequencing, conditional branching, parallel threads,
synchronous and asynchronous behavior.

• During the transformation of the input into the output,
there is little or no interaction between system and
actor—it is a batch process.

• Transformational systems are usually stateless.

• Transformational systems may perform number
crunching or computation intensive algorithms.

• The actors can be human beings, devices, or other
systems.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-9

Characteristics of Object-Persistence Systems

• It provides object storage and retrieval

capabilities to other subsystems.

• It hides the implementation from the rest of the

system.

• It is responsible only for storing and retrieving

objects, and does little or no business

processing except performance considerations.

• It is capable of efficient storage, retrieval, and

updating of a huge amount of structured and

complex data.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-10

Class Discussion

• Find examples of

– interactive systems

– event-driven systems

– transformational systems, and

– object-persistence systems

• Show that the example systems possess the

properties listed on previous slides,

respectively.

• Why do different types of systems require

different design methods?

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-11

System Types and Architectural Styles

Type of System Architectural Style

Interactive System N-Tier

Event-Driven System Event-Driven

Transformational System Main Program and

Subroutines

Object-Persistence

Subsystem

Persistence Framework

Client-server Client-server

Distributed, decentralized Peer-to-peer

Heuristic problem-solving Blackboard

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-12

N-Tier Architecture

requests

requests requests

requests

Graphical User

Interface Layer

Database

Layer

requests

Controller

Layer

Network

Communication

Layer

Business

Objects Layer

requests

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-13

Client-Server Architecture

<<client>>

Passenger

Check-In

Client 1

<<server>>

Flight

Information

System

<<remote

procedure

call>>

UML stereotype

for a user-defined

modeling

construct.

Input/output

port

UML notation

for a software

component

<<remote

procedure

call>>

<<remote

procedure

call>>

<<client>>

Passenger

Check-In

Client 2

<<client>>

Passenger

Check-In

Client 3

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-14

Main Program and Subroutine Architecture

main

program

subroutine 2 subroutine 1

<<function call>> <<function call>>

subroutine 6 subroutine 7 subroutine 5

<<function call>> <<function call>>

subroutine 4 subroutine 3

<<function call>> <<function call>>

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-15

Event-Driven Architecture

Component 1

State Based

Controller
Component 2

Component 3

Component 4

events

instructions

instructions

instructions

instructions

events

events

events

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-16

Object-Persistence Framework

Business

Object A

Business

Object B

Business

Object C

DB 1

DB 2

DB 3

DB Access

1

DB Access

2

DB Access

3

DB Manager

It is responsible for

storing and retrieving

objects from different

databases. It hides the

different databases

from the business

objects.

communicate in the

object-oriented

implementation

language

communicate in the

object-oriented

implementation

language

communicate in a

DBMS specific

language

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-17

Perform Custom Architectural Design

• Remember: Not all application systems

development projects can reuse an existing

architectural style.

• Custom architectural design may be required

to meet the needs of a specific system.

• Design patterns and COTS products are useful

for custom architectural design.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-18

Architectural Style and Package Diagram

database

+ Database

 Manager

 network <<import>>

<<import>>

<<import>>
<<import>>

Package diagram for an N-tier

architectural view

Legend: + public - private

gui

+ Main

+ MainFrame

- Checkout Dialog

- Return Dialog

+ Checkout Controller

+ Return Controller

- Loan

- Document

- Patron

business

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-19

Applying Software Design Principles

• Design for Change – design with a “built-in

mechanism” to adapt to, or facilitate

anticipated changes.

• Separation of Concerns – focusing on one

aspect of the problem in isolation rather than

tackling all aspects simultaneously.

• Information Hiding – shielding

implementation detail of a module to reduce its

change impact to other parts of the software

system.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

6-20

Applying Software Design Principles

• High Cohesion – achieving a higher degree of

relevance of the functions of a module to the

module’s core functionality.

• Low Coupling – reducing the run-time effect

and change impact of a subsystem to other

subsystems.

• KISS: Keep It Simple/Stupid – designing

“stupid objects.”

