Chapt"er

System Engineering

Key Takeaway Points

e System engineering is a multidisciplinary approach to develop systems that
involve hardware, software, and human components.

e System engineering defines the system requirements and constraints for the
system. It allocates the requirements to the hardware, software, and human
subsystems, and integrates these subsystems to form the system.

e Software engineering is a part of system engineering.

Many systems are embedded systems. An embedded system consists of hardware,
software, and human components. These components interact with each other to
accomplish the mission of the system. An example is an airport baggage handling
system (ABHS). It is responsible for moving the baggage from one place to another
within an airport. Its hardware includes conveyors and destination-coded vehicles
(DCV) running on high-speed tracks. Its software handles luggage check-in and
controls the hardware. The human workers operate the hardware and software. Other
examples of embedded systems include mail handling systems, air traffic control
systems, and manufacturing process control systems. System development of such
systems must consider the total system rather than the software system alone. A system
engineering approach is required.

Developing a software-only system may need a system engineering approach
as well. Consider, for example, an enterprise resource planning (ERP) system. An
ERP system is an integrated management information system for the whole organi-
zation. It provides integrated support to all functions of the organization including
marketing, sales, manufacturing, project management, supply chain management,
accounting, customer support, customer relationship management, access control,
and more. It automates all these business functions and the workflows among these
functions. System engineering is required to develop such a system for several rea-
sons. The system involves many business and organizational functions. The func-
tions involve different disciplines. A multidisciplinary development team is required.
The system is large and complex. It may involve legacy systems that have been de-
veloped and used for years. How to design the system and integrate with existing

databases and business processes is a big challenge: A system engineering approach
is needed
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System engineering is a discipline of its own. It is impossible to cover the dis-
cipline in one chapter. Therefore, this chapter only serves as an introduction. It aims
to provide the software engineer a basic understanding of the processes and activities
of system engineering. After reading the chapter, you will understand the following:

e System engineering process.

e System modeling and design techniques.

e Allocation of system requirements to subsystems.
e System configuration management.

3.1 WHAT IS A SYSTEM?

A system consists of components that interact with each other to accomplish a purpose.
"A system can be big or small, complex or simple, and exist physically or only concep-
tually. For example, the universe is a very large system that has been in existence for
millions of years. An ant is a very small system. These systems are natural systems.
In contrast to natural systems, there are many man-made systems. Man-made sys-
tems may exist physically or only conceptually. Mathematical logic, number systems,
measurement systems, and many classification systems are examples of conceptual
systems. Sprinkler systems that water gardens and lawns and telephone systems that
connect millions of families are examples of man-made systems that exist physically:
Computer-based systems are man-made systems that include software as a subsys-
tem or component. Examples of computer-based systems include telecommunication
systems, email systems, library information systems, and process control systems.
Some of these are software-only systems such as email systems. Others consist of
both software, hardware, and human subsystems such as the ABHS. All systems share

a set of properties or characteristics:

1. Each system consists of a set of interrelated and interacting subsystems, com-
ponents, or elements. For example, the ABHS consists of several subsystems,
which interact with each other to accomplish the mission of the system.

2. A system may be a subsystem of an even larger system, which in turn may
be a subsystem of another system. For example, the conveyor system and the
luggage check-in software system are subsystems of the ABHS. But the ABHS
is a subsystem of the airport system. In this sense, the relationship between
systems and subsystems is a recursive, whole-part relationship. This relationship
forms a whole-part hierarchy. Each system or subsystem occupies a position in
the hierarchy.

3. Each system exists in an environment and interacts with its environment. For
example, the ABHS exists in the airport environment and interacts with the flight
information system. The ABHS also works with the departing and arriving flights
to load and unload luggage.

4. Systems are ever evolving due to internal or external causes. For example, if the

economy is boommg, then the number of business travelers as well as leisure
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needs to expand. Technology advances may encourage the airport administration
to replace bar code scanners with radio frequency identification (RFID) devices.
Internal causes include detected design flaws, component defect, software bugs,
and the like. All these require change to the system and cause the system to evolve.

3.2 WHAT IS SYSTEM ENGINEERING?

System development for the ABHS must consider the total system rather than the soft-
ware system alone. In addition, the ABHS involves multiple engineering disciplines
including electrical and electronic engineering, mechanical engineering, civil engi-
neering, and software engineering, among others. Engineers of these disciplines must
work together to develop the system. In general, system development for embedded
systems involves many engineering and nonengineering disciplines:

o Electrical and electronic engineering. Many systems use very large-scale inte-
grated circuits (VLSIC), application-specific integrated circuits (ASIC), sensors,
relays, switches, and power supply components, among many others. For ex-
ample, the ABHS employs bar code printers to generate bag tags and bar code
scanners at intersections of the conveyor network to read the bar codes. Electri-
cal and electronic engineers perform analysis, design, integration, and testing of
such components and subsystems.

® Mechanical engineering. Mechanical devices are used by many systems to per-
form physical work. For example, the ABHS uses conveyors to move the luggage
and pushers at intersections to direct the luggage toward their destinations. The
system also uses high-speed tracks to transport the luggage between the termi-
nals. Therefore, the analysis, design, construction, testing, and installation of the
ABHS require the participation of mechanical engineers and technicians.

e Civil engineering. Large, interconnected structures are needed by the ABHS to
protect the equipment and the luggage. The conveyors and high-speed tracks
must be mounted on concrete bases. The design, construction, and testing of
such structures and bases, among others, are the focus of civil engineering.

® Software engineering. Software is responsible for performing the most critical
and challenging tasks of the total system. It carries out information processing
activities and controls the other equipment and devices of the total system. In
the ABHS, the luggage check-in software subsystem lets an airline agent check
in luggage for the passengers. The luggage bar code processing software directs
the mechanical pushers at intersections of the conveyor network to dispatch the
luggage toward their destinations. Software engineers are responsible for the
analysis, design, implementation, testing, and deployment of the software sub-
systems and components of the total system.

® Computer science. Computer and information sciences are the foundations of
software engineering and provide the technologies that are used in most systems.
For example, the ABHS involves at least programming languages, algorithms
and data structures, database systems, analysis and design of real-time embedded
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e Business administration and economics. Business aspects are important consid-
erations for most system development projects. For example, system engineering
for the ABHS needs to analyze the impact of local, national, and global economies
on the business of the airport and the ABHS in particular. It needs to estimate
the volume of luggage to be handled, future growth, revenues, costs, and return
on investment. All these require knowledge in accounting, finance, management,
and economics. The analysis, design, and implementation of the human resource
subsystem for the ABHS require knowledge and experience in human resource
management.

@Wg_s_t_i\iﬁit. Many systems need other engineering and nonengi-
neering disciplines such as mathematics, natural sciences, social sciences, law, and
humanities, to mention a few. In addition, system engineering must consider safety,
security, reliability, and many other attributes. For example, the design of the ABHS
must consider the safety of the workers working by the conveyors and high-speed
tracks. The system must include equipment to check luggage for compliance of se-
curity rules. The reliability of the ABHS is critical because it affects hundreds of
thousands of passengers.

In summary, system development is an interdisciplinary effort. It involves hard-
ware, software, and human resource developments. These imply a number of chal-
lenges. For example, how do we identify and formulate system requirements for such
systems? How do we design and construct such systems? And how do we manage
the development activities? How do we measure the performance, reliability, safety,
and other factors of such systems? How do we assess the impact of the system to the
society and environment? System engineering is the engineering discipline that an-
swers these questions. System engineering addresses these challenges. In particular,
system engineering emphasizes the following elements:

1. A system engineering process that covers the entire life cycle of the system. The
system development process defines the phases and the phase activities required
to develop the system. The process addresses the complete system life-cycle activ-
ities beginning with the initial system concept to the maintenance and retirement
of the system. This system-oriented approach encourages the engineering teams
to focus on the customer’s business needs and priorities, and develop the system
to satisfy such needs and priorities.

2. A top-down divide-and-conquer approach. This approach decomposes the total
system into a hierarchy of subsystems and components, and develops each of
them separately. With this approach, the ABHS is decomposed into subsystems.
Each subsystem is developed by a team of engineers. This divide-and-conquer
strategy enables the engineering teams to develop very large, complex systems.

3. An interdisciplinary approach to system development. As discussed above, sys-
tem development is an interdisciplinary effort. That is, interdisciplinary teams
work with each other to carry out the system development activities.

Figure 3.1 illustrates the phases and workflows of a system engineering process.
The boxes represent the phases or activities. The solid arrow lines represent work-
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System Requirements Definition
e identify business needs

o define system requirements

o conduct feasibility study

e produce a project plan

System Modeling and Design
o design system architecture
o partition system requirements
e allocate system requirements to subsystems
o define subsystem functions
o define subsystem interfaces and interaction behavior
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Hardware Development Software Development Human Resource

s conduct subsystem o software requirements Development
architectural design analysis e organize human resource
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component design e implementation & unit qualification & skills
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e construct & test acceptance testing e recruit & train employees
subsystems/components \g — — - — — — — — — ] i __________ >

System Integration & Testing
¢ integrate subsystems
e conduct system integration testing,
acceptance testing and performance

testing

System Deployment
o install system in target environment
e test system by users

l Legend:

System Maintenance phase/activity

o fix field detect defects
o perform system enhancements

< — - - interaction
—» workflow

FIGURE 3.1 A system engineering process

hardware, software, and human resource development activities. The type of system
influences the activities involved. For example, if the system is a software-only sys-
tem, then the hardware development activities are not performed. The phases of the
system engineering process are outlined below and detailed in the following sections:

1. System requirements definition. Systems are constructed to satisfy business needs.
For example, an ABHS is developed to satisfy the needs of an airport. System
requirements definition focuses on identifying business needs, and specifies the
capabilities of the system to meet the business needs. The result is a system
requirements specification and a project plan to design, implement, test, and
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2. System architectural design. The system requirements specify the capabilities
of the system needed to solve the business problems. They do not state how to
provide the capabilities. System architectural design drafts the solution or how
to provide the capabilities. In particular, this activity defines the system archi-
tecture or overall structure of the system. That is, it depicts the subsystems and
the relationships between the subsystems. This activity also assigns the system
requirements to the subsystems.

3. Specify subsystem functions and interfaces. Based on the system requirements as-
signed to the subsystems, the subsystems’ functions and interfaces are specified.
This activity also specifies how the subsystems interact with each other.

4. Subsystems development. After system modeling and design, the subsystems are
developed by separate engineering teams simultaneously. The engineering teams
refine the system requirements allocated to the separate subsystems, and design
and implement the subsystems to satisfy the requirements. For example, the soft-
ware engineering team refines the software requirements, and design, implement
and test the software subsystems according to the software requirements.

5. System integration, testing, deployment, and maintenance. The subsystems are
integrated. Integration testing is performed to ensure that the subsystems work
with each other. System acceptance testing is performed to ensure that the system
indeed delivers the capabilities specified in the system requirements specifica-
tion. The system is then installed in the target environment and tested by the
users. Errors, defects, and user feedback are addressed. The system enters the
maintenance phase.

3.3 SYSTEM REQUIREMENTS DEFINITION

System requirements definition identifies the business needs and specifies the sys-
tem requirements. It begins with an initial system concept, and expands and refines
the concept. During this process, a set of capabilities that the system must deliver
is identified. These capabilities are formulated as system requirements. The sys-
tem requirements include functional requirements, quality requirements, performance
requirements, and other system-specific requirements. This section describes the sys-
tem requirements definition activity.

3.3.1 Identifying Business Needs

Identifying business needs begins with an information collection activity. That is, in-
formation about the business goals and the current business situation is collected. The
teamn identifies the gap between the current situation and the business goals, and derives
the business needs. Consider, for example, a small town airport that wants to install an
ABHS. To identify the business needs, the team collects information about the current
airport and business goals of the new airport. Information about the new airport may
include the population and the nature of the businesses of the small town, number of
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and other factors. The information collection activity answers the following questions:

What is the business that the system will automate?
What is the system’s environment or context?
What are the business goals or product goals?

1.

2.

3.

4. What is the current business situation, and how does it operate?

5. What are the existing business processes, and how do they relate to each other?
6.

What are the problems with the current system?
7. Who are the users of the current system and the future system, respectively?

8. What do the customer and users want from the future system, and what are their
business priorities?
9. What are the quality, performance, and security considerations?

The information collection activity uses several information collection
techniques:

1. Customer presentation. Customer presentation is an effective approach to gather-
ing information. It takes place at the very beginning of the project. A management
or senior personnel designated by the customer presents an overview of the cur-
rent business, known problems, what the customer and users expect the system
to accomplish, and what their business priorities are. The list of questions pre-
sented above may serve as the focus of the presentation. The presentation should
be limited to no more than two hours including questions and answers.

2. Study of current business operations. The team may pay a visit to the business
environment. The team may request a guided tour of the customer’s business
operations where they may collect paperwork forms, descriptions of operating
procedures, policies, and other relevant materials. The team should study these
materials carefully. These activities help the team understand the customer’s
business entities, business processes, and workflows. The workflows may include
information flows and material flows.

3. User survey. User surveys are useful for acquiring users’ opinions about the
current system and their expectations of the new system. The survey questionnaire
should be brief and focus on important issues. Use different survey questionnaires
for different groups of users. Issues that require clarification are identified and
addressed during user interviews.

>

User interview. User interviews are useful for acquiring information that is dif-
ficult to obtain through user surveys. They are also useful for clarifying issues
that are not clear in the user surveys. The interviews are conducted with selected
users, either jointly or individually. Each interview session should last about one
hour. A list of items to be discussed during the interviews should be prepared
beforehand. The list may be shared with the users prior to the interviews.

S. Literature survey. Literature survey provides additional information to help the
development team understand the application domain. Literature survey should
focus on similar projects, domain knowledge, business processes, government
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3.3.2 Defining System Requirements

The next step is deriving system requirements from the business needs identified.
For example, the capabilities of the ABHS are derived to satisfy the needs of the
ABHS. However, not all needs are to be satisfied due to budget, delivery schedule
technology, and political constraints as well as cost-effectiveness considerations. A
feasibility study is sometimes performed to ensure that the team can deliver the
capabilities with the budget and schedule constraints. The capabilities that the system
must deliver are formulated as system requirements. In illustration, the ABHS project
may identify many requirements to satisfy the needs. Some of them are stated below
to serve as examples. The requirements are numbered to facilitate reference.

R1. ABHS shall check in and transport luggage to departure gates and baggage
claim areas according to the destinations of the passengers.

R2. ABHS shall allow airline agents to inquire about luggage status and to locate
luggage.

R3. ABHS shall check all baggage and detect items that are prohibited.

R4. ABHS shall be able to serve 20,000 passengers per day.

An end product of this phase is a system requirements specification. The specifi-
cation may include constraints that restrict the solution space. For example, the ABHS
may include constraints on the available space to build the conveyor and high-speed
track network. It may include constraints on the types of equipment that must be used.
Another product of this phase is a project plan. The project plan outlines the mile-
stones of the project, schedules the development activities, and allocates resources to
the activities. A system test plan may be produced. The test plan specifies the system
test objectives, test procedures, and needed resources.

3.4 SYSTEM ARCHITECTURAL DESIGN

After the system requirements are identified, the next logical step is to design the
system to satisfy the system requirements. Ideally, the system should be designed and
implemented by engineers who are experts in all the engineering disciplines involved.
Unfortunately, such engineers are hard to find and expensive to hire. Therefore, sys-
tems are usually decomposed into a hierarchy of subsystems, which can be developed
by engineers of separate disciplines. For example, electrical subsystems are devel-
oped by electrical engineers. Mechanical subsystems are developed by mechanical
engineers and software subsystems are developed by software engineers. These sub-
systems are then integrated during the system integration and testing phase. This
approach makes it easier to find qualified engineers. It also reduces the system de-

velopment complexity and costs. System archi ral design performs the following

interrelated activities:
Rt it

1. Decompose the system into a hierarchy of subsystems. This step decomposes
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reduces the complexity and costs of system development because the subsystems
are easier to design and implement.

2. Allocate system requirements to subsystems. This activity assigns the system re-
quirements to the subsystems. It aims to reduce the number of requirements
that are shared among the subsystems. In this way, the responsibilities of the
subsystems are clearly defined. In addition, the requirements allocated to a sub-
system should be functionally related. The allocation is shown in a requirement—
subsystem traceability matrix.

3. Visualize the system architecture. This activity shows the architectural design
as a diagram that consists of the subsystems and the relationships between the
subsystems.

S
3.4.1 System Decomposition
One important task of system architectural design is identifying the subsystems of
the system. A top-down, divide-and-conquer approach is often used. In particular,
the approach decomposes the system into a hierarchy of subsystems. This approach
reduces the complexity of system development because each subsystem is easier to
design and implement. There are different ways to decompose a system. Therefore, the
resultis notunique. System decomposition aims at accomplishing the following goals:

1. The result should enable separate engineering teams to develop the subsystems.
This reduces the system development costs because it reduces the number of
engineers who are specialized in multiple engineering disciplines. It also sim-
plifies the communication between the teams and reduces the communication

overhead.

2. The result should facilitate the use of commercial off-the-shelf (COTS) parts.
COTS are third-party products that can be purchased or acquired. The use of
COTS increases productivity and quality while it reduces cost and time to mar-
ket. For example, the design of the ABHS should consider using COTS for the
conveyor systems, high-speed tracks, bar code readers, and luggage check-in
software rather than developing these from scratch.

3. The result should partition or nearly partition the system requirements. That
is, few subsystems share requirements with other subsystems. This reduces the
possibility that some requirements are not fulfilled adequately due to a misun-
derstanding between the teams that share the requirements.

4. Each subsystem should have a well-defined functionality. This makes the sub-
systems easy to understand. For example, the luggage check-in subsystem deals
with luggage check-in. The conveyor subsystem is responsible for moving the
luggage within a terminal.

5. The subsystems should be relatively independent. That is, changing a subsystem
does not affect the other subsystems. Such a modular design facilitates system
maintenance. For example, the luggage check-in subsystem and the conveyor sub-

system are two independent subsystems. Either of them can be replaced without
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FIGURE 3.2 Partitioning a system into a hierarchy of subsystems

6. The subsystems should be easy to integrate. That is, the subsystems should have
simple interfaces and interaction behavior. This simplifies the communication
between the subsystems. It facilitates subsystem integration, integration testing,
and system maintenance.

ystem decomposition applies a number of strategies, which may affect each
other. Therefore, they should be applied iteratively until a satisfactory result is ob-
tained. The strategies are:

Decompose the system according to system functions.

. Decompose the system according to disciplines.

Decompose the system according to existing architecture.

Decompose the system according to the functional units of the organization.
Decompose the system according to models of the application.

Decomposing the system according to system functions is a frequently used
strategy. It identifies the functions of the systems from the system requirements.
That is, it partitions the system requirements into nearly disjoint functional clusters.
It then identifies the functional subsystems according to the functional clusters. If
there are three functional clusters, then the system is decomposed into three func-
tional subsystems. Figure 3.2(a) shows that the system is decomposed into Subsys-1,
Subsys-2, and Subsys-3. The subsystems are then decomposed into domain-specific
subsystems, that is, hardware, software, and human resource subsystems. This ap-
proach is used if there are development teams to develop the functional subsystems,
or the functional subsystems can be ordered from a third party. Sometimes engineers
need to decompose the system requirements into lower-level requirements to make
the subsystems relatively independent. To illustrate, suppose that the ABHS has the
following requirement:

R1. ABHS shall check in and transport luggage to departure gates and baggage
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This requirement includes several functions such as luggage check-in and luggage
transportation. If the airport has more than one terminal, then the luggage transporta-
tion function involves conveyors and high-speed tracks. Therefore, the requirement
should be decomposed. Requirements decomposition should ensure that the low-
level requirements are equivalent to the high-level requirements. That is, the high-
‘level requirement and the resulting low-level requirements state the same capabilities.
Assume that each flight’s check-in area and departure gate are located in the same
terminal. So are the arrival gate and the baggage claim area. The requirement R1 can
be decomposed into the following:

R1.1. ABHS shall allow airline agents to check in luggage.

R1.2. ABHS shall transport luggage to their destinations within the airport.
R1.2.1. ABHS shall transport luggage from check-in areas to departure
gates.

R1.2.2. ABHS shall transport luggage from arrival gates to baggage claim
areas.

R1.2.3. ABHS shall transport luggage from arrival gates to departure gates
for transfer passengers.

R1.2.4. ABHS shall transport luggage within a terminal using conveyors.
R1.2.5. ABHS shall transport luggage between terminals using DCVs run-
ning on high-speed tracks.

R1.3. ABSH shall control the transportation of the luggage within and between

the terminals.

Requirement R4 is a performance requirement and relates to several subsystems.
It should be decomposed as well so that the lower-level requirements can be assigned
to separate subsystems. For example, the lower-level requirements would specify

the required speed and volume of luggage for the subsystems. This must consider ‘

the number of terminals, check-in areas, and conveyor systems per terminal, hours
of operation, and the like. The decomposition must also take into account a certain
percentage of redundancy to cope with extremely high demand during the holiday
season. The following are examples of the lower-level performance requirements:

R4.1. Each check-in area shall handle 1,150 check-in baggages per day.

R4.2. Each check-in agent shall check in an average three passengers per minute.
R4.3. Each conveyor hardware shall scan and transport 500 check-in pieces of
luggage per hour.

R4.4. ABHS control software shall process 2,300 check-in bags per day and
1,000 bar code scan requests per hour.

Next, the system requirements are partitioned into functional clusters. That is,
requirements that share the same functionality are grouped together to form a func-
tional cluster. The functional clusters are used to derive the functional subsystems.
Figure 3.3 shows the functional clusters and subsystems derived from the system

nnnnnnnn — b
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: . . System Functional Subsystem
Functional Cluster Functional Description Requirements Identified
Luggage check-in This functional cluster processes luggage check-in. R1.1,R4.1,R4.2 Luggage check-in

subsystem

This functional cluster is responsible for moving R1.2.1,R1.2.2, Conveyor subsystem

Conveyor luggage within a terminal. R1.2.3,and R1.2.4,
R4.3

High-speed track This functional cluster transports luggage between R1.2.3and R1.2.5 | High-speed track

terminals. subsystem
Software control This functional clust.er 'controls the hardware tg R1.3,R4.4 Software control

transport luggage within and between the terminals. subsystem

FIGURE 3.3 Functional clusters and functional subsystems

Another strategy is to decompose the system according to the engineering disci-
plines. It results in subsystems that are named after the disciplines such as electrical
subsystem, electronic subsystem, mechanical subsystem, and software subsystem.
In Figure 2.2(b), the total system is decomposed into hardware, software, and hu-
man subsystems. These are decomposed into functional subsystems. This approach
is used if the hardware, software, and human subsystems are developed by hardware,
software, and human engineering teams or departments.

Decomposing the system according to existing architecture is applied when the
goal of the project is to extend or enhance an existing system. The approach could re-
duce the development costs and avoid the potential risks due to modifying the existing
system architecture. The system can also be decomposed according to the organiza-
tion’s functional units. For example, the manually operated baggage handling system
of the small town airport may consist of luggage check-in, transport, and baggage
claim departments. These may suggest three major subsystems for the new system.

If models of the application or system are constructed to help understand the
application or existing system, then these models may be used to guide the decom-
position. For example, models may be constructed to understand the workflow of
the existing airport luggage handling system. The models may show that baggages
are manually checked in and transported to the departure gates. Moreover, bags are
unloaded from arriving flights and transported to the baggage claim areas and transfer
gates. From the models, subsystems may be identified and used as the initial decom-
position of the system. The initial decomposition is then refined and evolved into
a hierarchy of subsystems.

3.4.2 Requirements Allocation

Once the system is decomposed into a hierarchy of subsystems, the system require-
ments are assigned to the subsystems. The allocation considers several factors in-
cluding developmental and operational costs, performance, quality of service, cost-
effectiveness, ease of change, among others. For example, some system functions
may be implemented by either hardware or software. Generally speaking, applica-
tion specific integrated circuits provide better performance. If performance is not an
issue, then some of the system requ1rements may be assigned to the software subsys-
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Luggage Check- Conveyor High-Speed Software Control
In Subsystem Subsystem Track Subsystem Subsystem
R1

R1.1 X

R1.2 g
R1.2.1 X @
R1.2.2 X ’
R1.2.3 X X
R1.24 X
R1.2.5 X

R1.3 X

FIGURE 3.4 Requirements to subsystems traceability matrix

depends on the results of the previous steps. If the subsystems are derived from the
functional clusters, then the mapping from the functional clusters to the subsystems
is the allocation. This is the case for the ABHS example, as Figure 3.3 shows.

The allocation of the system requirements to the subsystems is visualized in a
traceability matrix as shown in Figure 3.4. The rows show the requirements while the
columns show the subsystems. The entries indicate the allocation of the requirements
to the subsystems. For a real-world project, the traceability matrix is large because
it involves hundreds of requirements and many subsystems. Therefore, Figure 3.4 is
only an illustration. The matrix has a number of advantages:

1. It can check that every requirement is assigned to a subsystem. That is, each leaf-
level requirement row shows at least one cross (‘x’). If a leaf-level row does not
contain a cross, then the system requirement is not assigned to any subsystem.

2. It can check if the allocation is appropriate. Assigning a system requirement
to several subsystems should be avoided because it is difficult to divide the
functionality among the subsystems. The traceability matrix can detect such cases
by counting the number of crosses on each row. If a row contains many crosses,
then the requirement is assigned to many subsystems. In this case, decomposing
the requirement is desired.

3. It shows which requirements are assigned to a subsystem. That is, the crosses
shown in each column indicate the requirements that are assigned to the subsys-
tem represented by the column. The subsystems must satisfy the requirements,
respectively.

4. It can check if a subsystem is assigned too many responsibilities. If a column
contains many crosses, then the subsystem is assigned many responsibilities.
The subsystem may be decomposed to distribute the requirements among the
lower-level subsystems.

5. It can check the functional cohesion of the subsystems. The requirements that are
assigned to a subsystem should be related functionally. If the requirements indi-
cated by the crosses on a column are not related, then the subsystem represented
by the column has low functional cohesion. The requirements should be par-
titioned into several functional clusters. The subsystem should be decomposed
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3.4.3 Architectural Design Diagrams

It is a common practice to construct application models and system models during
system design. These models help the team understand and analyze the application
domain, business processes, and workflows to identify problems, and develop and
evaluate design solutions. Various diagrams are used to depict different aspects of
the application and the system. Block diagrams, Unified Modeling Language (UML),
and its extension, System Modeling Language (SysML), and data flow diagrams are
widely used during system modeling and design.

Block diagrams use rectangles to represent subsystems and components and
directed edges to denote workflows between the subsystems and components. As
an example, Figure 3.5 shows a high-level block diagram for the ABHS. The block
diagram indicates that an ABHS consists of terminal subsystems, connected to a high-
speed track subsystem. Passengers check in luggage with the terminal subsystem. The
high-speed track subsystem transports luggage between the terminals. Both of these
subsystems interact with the ABHS control software, which interacts with the flight
information system. Figure 3.6 shows a refinement of the terminal subsystem. In the
figure, hardware, software, and human subsystems are displayed.

UML was initially created for modeling software applications and systems. Its
generality makes it a useful tool for system modeling as well. This is achieved by
using the stereotype mechanism provided by UML. For example, Figure 3.7 shows a
component diagram that models the hardware and software of a radio communication
system (RCS). It uses the stereotype “< <subsystem>>"" to extend the component
modeling construct to model a subsystem. The diagram shows that an RCS consists
of three subsystems: a base station subsystem, an account management subsystemn,
and a mobile units subsystem. The working of an RCS is similar to a cellular network
except that it has only one base station with high-power transceivers. The high-
power transceivers can service a much larger area than a single base station of a
cellular network. Through the relay of the high-power transceivers, mobile units can

Airport Baggage Handling System (ABHS)
Terminal »  High-Speed
r » Luggages
Passenger Luggages, Subsystem | geag Tracks
ticket, ID b—p—p Luggages Subsystem
1 Data 5
> ABHS
Control Instructions
Instructions Soft\:vare Data
Luggage &
flight data Flight
» Information

System
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FIGURE 3.6 Block diagram showing refinement of a subsystem
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FIGURE 3.7 System modeling using a stereotyped component diagram
L m—)

communicate in the service area. The figure shows that each mobile unit consists of
amobile hardware subsystem and a mobile software subsystem. The hardware sends
events to the software, which issues instructions to operate the hardware. For example,
when the user makes a call, the event is sent to the software. The software instructs
the hardware to contact the base station through a radio frequency channel, called an
airlink. The high-power transceivers of the base station receive the request and forward
it to controller hardware, which forwards it to the controller software. The controller
software validates the call request. If the caller and callee are valid subscribers, then
it instructs the hardware and the transceivers to establish a connection.

The ability of UML to support system modeling leads to an extension of UML
that is, the System Modeling Language (SysML). The nine diagrams of SysML and

how they relate to UML are summarized in Figure 3.8. The last column of the table
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s Presented
SysML UML Description Remark in Chapter

Model activities that relate to each other via SysML activity diagram extends 14
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diagram diagram | synchronization, and concurrency relationships
Block Model structural elements called blocks and their | Block definition diagram
definition composition and classification extends UML class diagram.
diagram
Internal Model interconnection and interfacing of internal | Internal block diagram extends
block elements of a block UML composite structure
diagram diagram.
Package Package Model the logical organization of modeling Same diagrams
diagram diagram | artifacts and software artifacts
Parametric Specifies constraints to support engineering
diagram analysis

. Model text-based requirements and their
Requirement . . . . .
. relationships with other requirements and artifacts

diagram .

such as design elements, test cases, etc.
Sequence Sequence | Model time-ordered interaction behavior between | Same diagrams 9
diagram diagram objects
State State Model state dependent behavior of an object Same diagrams 13
diagram diagram
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FIGURE 3.8 Relating SysML and UML diagrams
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FIGURE 3.9 SysML block definition diagram for the ABHS

and 3.10 show an SysML block definition diagram (bdd) and an SysML internal
block diagram (ibd) for the ABHS. These diagrams correspond to the block diagrams
displayed in Figures 3.5 and 3.6, respectively.

Sometimes, it is desirable to show material flows in addition to information
flows in a model. For example, the ABHS moves luggage from the check-in areas
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FIGURE 3.10 SysML internal block diagram for ABHS terminal subsystem
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FIGURE 3.11 Modeling material flows

called material flows. In Figures 3.5 and 3.6, material flows and information flows
are represented using the same notation. The SysML diagrams shown in Figure 3.9
and 3.10 also use the same notation for information and material flows. To distinguish,
material flows should be modeled differently. To illustrate, Figure 3.11 shows a data
flow diagram for a library system. The block arrows represent material flows. The
ovals represent tasks or processing functions. The entity or subsystem that performs
that function is shown in the lower compartment of the oval. The upper compartment of
the oval shows the task ID. Material flows are useful in assigning system requirements
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Input pins

Figure 3.11 suggest that functions involving material flows such as the receiving dock,
cataloging room, and book shelves should be assigned to the appropriate hardware
and human subsystems.

3.4.4 Specification of Subsystem Functions and Interfaces

This step specifies the functionality of each subsystem and how the subsystems in-
teract with each other. The functionality is specified according to the system re-
quirements allocated to the subsystem. It refines the requirements assigned to each
subsystem.

The interfaces between the subsystems specify how the subsystems connect and
communicate with each other. The interaction behavior specifies the sequences of
“messages exchanged between the subsystems. These enable the teams that imple-
ment the subsystems to know what interfaces and interaction behavior they can ex-
pect and need to provide. Hardware-software interfaces are the most common in
embedded systems. In many cases, a microcontroller integrated circuit is used. Fig-
ure 3.12 illustrates this for an air conditioner. The figure shows only the most rele-
vant items. For example, the unused pins should, in fact, connect to other electronic
components.

The state diagram shown in Figure 3.12 represents the behavior of the software
running inside the IC chip. The software enters into the Relay Off state when the
power switch is turned on. The transition from the Power Off state to the Relay Off
state indicates this. The software periodically reads the byte representing the eight
pins that connect to the temperature sensor to obtain the room temperature. If the
room is hot, the software sets pin 12 to 1. This applies a 1.5 volt direct current DO
to the coil of the relay. The coil generates a magnetic field, which attracts the on/off
switch to close the power circuit of the compressor and fan. Thus, cooling begins.
When the room becomes cool, the software sets pin 12 to 0. This opens the power
circuit of the compressor and fan. Thus, cooling stops.

1 Microcontroller IC 11 Relay
Qorl.Sv & Coil
2 If room is hot, 12 g onfoff
3 set pin 12to 1 13 qd itch
——————P 0v TL s&w cl
On
4 If room is cool, L] — —
5 setpin 12to 0 15 Ground
6 Poerl | power 16 1 Compressor
is off s on

71—
! Software control 1 — AC/DC
8 Power state diagram 18 adapter 110-220v AC
9 Off 1913

Power switch

on/off input




Chapter 3 System Engineering 71

In the case shown in Figure 3.12, the interface and interaction behavior specifi-
cation defines the pins that represent the room temperature, the meaning of the byte
read by the software. The specification also defines the output pins and the meaning
of the output values. In this case, the output pin is pin 12. When the pin is set, the
relay is engaged and the cooling begins. Besides software-hardware interface, there are
human-software, software-software, human-hardware, human-human, and hardware-
hardware interfaces. These interfaces and interaction behavior are specified similarly.

System design also produces a system integration test plan and an acceptance . %
test plan. These specify test procedures to ensure that the subsystems will work with
each othier as expected, and the system delivers the capabilities as specified in the
system requirements specification. Required resources to conduct system integration
testing and acceptance testing are also specified. These test plans are used during the
system integration and testing, and acceptance testing phases.

3.5 SUBSYSTEMS DEVELOPMENT

After system design and allocation, the subsystems are assigned to different engi-
neering teams. The engineering teams construct and test the subsystems separately.
In particular, the software engineering (SE) team applies software engineering pro-
cesses and methodologies to develop the software subsystem. The team also performs
quality assurance and management activities. The engineering teams maintain close
contact, exchange progress status, and collaborate with each other to solve interdis-
ciplinary design and implementation problems. This section presents activities that
are relevant to the software engineering team.

3.5.1 Object-Oriented Context Diagram

The software development activity needs to consider the context of the software sub-
system. The context consists of real-world objects and other subsystems that interact
with the software subsystem. Object-oriented software engineering models the world
and the software system as consisting of objects that interact with other. For ex-
ample, the context of the air-conditioning software shown in Figure 3.12 includes
the room temperature sensor, the AC/DC adapter, and the relay. The context of the
ABHS control software displayed in Figure 3.5 includes the terminal subsystem, the
high-speed track subsystem and the flight information subsystem. Figure 3.6 shows
that the software interacts with the bar code scanners and bag pushers, which are
components of the terminal subsystem. Object-oriented software development mod-
els these as objects that interact with the software under development. The result is
displayed in a UML class diagram called a context domain model. It is also called
a context diagram. The context domain model shows the context objects, proper-
ties of the context objects, and relationships between the context objects and the
software.

. To illustrate, Figure 3.13 shows a context diagram for the ABHS control software.
The diagram specifies the types of objects that interact with the ABHS control soft-
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FIGURE 3.13 A context domain model for ABHS control software

information contained in the context diagram is useful for the design of the software
subsystem.

3.5.2 Usefulness of an Object-Oriented Context Diagram

The advantages of an object-oriented context diagram are as follows:

1. It provides a unified view of the software objects and the context objects. This
helps the team understand the context objects and their relationships to the soft-
ware subsystem.

2. It highlights the interfaces and interaction with the context objects. The context
domain model treats the software as a black box, and shows only the context

objects, their relationships, and attributes that are useful to the design of the
software subsystem.

il

It helps the development of the software subsystem. For example, the attributes
of the bar code scanners are useful for the design and implementation of the
classes that interface with the bar code scanners. The multiplicity, such as “1..*”
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support. The information shown in the context diagram is also useful for testing
and maintenance. For example, when adding a new type of bar code scanner
only the classes that interface with the new scanner need to be designed and
implemented.

4. Itfacilitates the communication and colla } ith other engineering teams.
The object-oriented context diagram highlights the interfaces and interaction with
other engineering subsystems. This helps the software engineering team to focus
on the interface and interaction issues when working with the other engineering
teams.

5. It is useful for training. A software subsystem of a large complex system needs to
interact with many other complex systems. It is not easy to understand the context.

Qicontext diagram is a useful tool for new members to learn the context of a

software subsystem.

3.5.3 Collaboration of Engineering Teams

During the subsystems development process, the engineering teams maintain close
contact to exchange status and solve interdisciplinary problems. Consider, for ex-
ample, the design and prototyping of a radio transceiver subsystem. The electronic
engineering (EE) team may discover that a certain feature should be implemented with
software rather than hardware. The EE team would meet with the SE team to assess
the feasibility. A change proposal is submitted if the two teams agree on the change.
A change control board reviews the proposal and either approves or disapproves the
change. If the proposal is approved, the change is implemented.

3.6 SYSTEM INTEGRATION, TESTING, AND DEPLOYMENT

The subsystems developed by the various engineering teams are then integrated, and
integration and system testings are performed. System integration testing is conducted
according to the system integration test plan produced in the system design and alloca-
tion phase. Due to changes during the subsystems development phase, modification
to the test plan may be required. System integration testing refines the test proce-
dures specified in the test plan and executes the tests to ensure that the subsystems
communicate properly through the subsystem interfaces.

System testing is performed according to the acceptance test plan. It ensures
that the system in fact can deliver all the capabilities stated in the system require-
ments. Depending on the system, integration and system testings may require special
equipment. For example, test equipment for telecommunication systems can gener-
ate millions of simulated calls to test the system under development, and accurately
measure the throughput, performance, and response times of the system. After system
testing, the system is shipped and installed in the target environment. The system is
tested by the users. This is called beta testing. Defects found during beta testing are
reported to the development team. The defects are removed and the system retested.
After beta testing, the system enters into the maintenance phase. During maintenance,

T
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3.7 SYSTEM CONFIGURATION MANAGEMENT

x

System engineering involves multiple engineering teams. The teams must work in a
coordinated and controlled manner. Suppose that the design of a software component
depends on the design of an electronic component. In this case, the design of the
software component cannot be finalized until the design of the electronic component
is finalized. The question is: how is the software engineering team notified when
the electronic component design is finalized? Sending an email is an option, but this
informal approach is problematic for a large system development project. Who should
be responsible for sending the email? Who should receive the email? What if the email
is not sent, or does not reach the receiver? What should be written in the email? A
formal means to notify the engineering teams of such events is needed.

Change control is another issue that must be coordinated. For example, if the
design of the electronic component is changed, then the design of the software com-
ponent must change as well. This means that the software engineering team should be
notified. A notification mechanism is needed. If the design of the electronic compo-
nent could be changed frequently and arbitrarily, then the software engineering team
would feel difficult to cope with the changes. On the other hand, if the design cannot
be changed, then how can the electronic team correct design flaws or design errors?
System configuration management solves these problems.

System configuration management is based on the concept of a baseline. A base-
line denotes an important stage of the project. For example, a system development
project consists of system requirements baseline, system design baseline, allocation

.baseline, subsystem design baselines, and more. The system requirements baseline

signifies that the system requirements analysis phase is successfully completed. A
baseline is associated with a set of artifacts called configuration items. For example,
the system requirements baseline may include the system requirements specification
and the project plan. When these are produced and reviewed, and the defects found
by the reviewers are removed, the system requirements baseline can be established.
Before establishing the system requirements baseline, these artifacts can be modified
freely. Once the baseline is established, changes to these artifacts must go through
a change control procedure. That is, the proposed changes must be evaluated by
a change control board representing the stakeholders. If the proposed changes are
accepted, then they are implemented and the progress status is monitored. If the pro-
posed changes are rejected, then they are archived. In summary, system configuration
management consists of four main functions:

1. Configuration item identification. This function defines the project baselines and
associated configuration items. Some examples of baselines are the system re-
quirements baseline, system design baseline, allocation baseline, and subsystem
design baselines. Example configuration items include system requirements spec-
ification, project plan, system acceptance test plan, system design specification,
allocation plan, system integration test plan, and more. A configuration item can
be changed freely before the baseline is established. A baseline can be established
when all the associated configuration items are checked into the configuration
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FIGURE 3.14 Configuration change control

of the system requirements specification and the project plan, then the baseline
can be established when both of these documents are checked into the config-
uration management system. Once the baseline is established, changes to the
configuration item need to go through a change control procedure.

¢ g €control JThis function defines the change control procedure
and executes the procigure 3.14 illustrates the change control procedure.
First, the needed change is identified and analyzed. Next, an engineering change
proposal (ECP) is prepared. It specifies the change, its impact, duration, and
cost. The ECP is evaluated by a change control board (CCB). The CCB consists
of representatives of parties that may be affected by the proposed change. The
evaluation either accepts or rejects the ECP. As a result, the proposed change is
either implemented or archived.

3. Configuration auditing. This function formally establishes the project baselines.
It also ensures that the proposed engineering changes are made properly. To
achieve these goals, configuration item verification and validation are performed.
Configuration item verification ensures that the required configuration items are
produced when a baseline is established. For example, it ensures that the system
requirements specification and the project plan are produced prior to establishing
the system requirements baseline. Configuration item validation ensures that the
configuration items are correct, for example, the system requirements specifica-
tion is reviewed by the engineering teams, domain experts, customer, and users,
identified defects are removed and concerns are addressed.

-4, Configuration status reporting. This function provides database support to the
other three functions. The database can be queried for information about the
configuration items. The function also publishes events about the system con-
figuration. These include the establishment of a baseline and changes to the

75



76 Part| Introduction and System Engineering

SUMMARY

This chapter presents system development activities
that involve hardware, software, and human compo-
nents. It describes the system engineering process and
techniques for system modeling, design, and system
requirements allocation. After allocation, the subsys-
tems are developed by separate teams of various en-
gineering disciplines. The subsystems are then inte-
grated and tested to ensure that the system satisfies

FURTHER READING

the system requirements and constraints. During the
entire system development process, numerous anal-
ysis, design, implementation, and testing documents
are produced and updated. Updating one document
may affect many other documents. The updates must
be coordinated, which is done by system configura-
tion management.

Excellent presentations of various aspects of system engi-
neering are given by Blanchard [31] and Kossiakoff et al.
[99]. SysML is presented in [65] and UML in [36]. In
[152], Thayer presents how to apply system engineer-

CHAPTER REVIEW QUESTIONS

ing principles to developing large, complex software sys-
tems. The paper integrates IEEE software engineering stan-
dards and processes into the software system engineering
process.

1. What is system engineering?

2. Why do we need system engineering?

3. Why is system engineering considered an interdisci-
plinary approach?

4. What are the phases and activities of the system engi-
neering process described in this chapter?

5. What are the purposes of hardware development, soft-
ware development, and human resource development,
and why are they performed separately?

6. How does the system engineering process tackle the
system development challenges?

EXERCISES

7. What is the relationship between system engineering
and software engineering?
8. What factors should the system engineering team con-
sider during system design?
9. What are the applicable strategies for decomposing a
system or subsystem during system design?
10.
11.

12. What are the potential challenges of system integration
and testing?

What is system modeling?
What is a requirement-subsystem traceability matrix?

31 W‘Provide a brief description of the functions of a vend-
ing machine. Identify and formulate all functional
and performance requirements.

3.2 Identify two embedded systems not mentioned in
this chapter. For each of these systems, perform the
following:

a. Briefly describe the functions of the system. The
description should be about a half of a page to one
page including diagrams, if any.

b. Identify and formulate five functional requirements
and two nonfunctional requirements. One of the
nonfunctional requirements must be a performance
requirement.

¢. Decompose the system and allocate the system re-
quirements to the subsystems.

3.3 A coin-operated car wash system is a self-service car
wash system. A customer inserts the required number
of quarters to buy a preset period of wash time. The
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customer can turn a dial to select soap, foam, rinse,

and wax any time during the wash period. The system

beeps when one minute is remaining. The customer

can insert more quarters to prolong the wash period.

Perform the following for the car wash system:

a.Identify and specify the system require-
ments including functional and nonfunctional
requirements.

b. Decompose the system into functional subsystems.
Decompose the system requirements if necessary.

c. Allocate the system requirements to the sub-
systems.

d. Construct a system architectural design diagram
using a diagramming technique of your choice or
as designated by the instructor.

A railroad crossing system employs sensors, flashing
lights, sounding bells, and gates to control the traf-
fic at arailroad intersection. When a train approaches
the intersection from either direction, a sensor device
senses the train and communicates with the software.
The software turns on the flashing yellow warning
light and the sounding bell for a given period. It then
changes the light to flashing red and closes the gates.
After the train has left the intersection, another sen-
sor device detects this and communicates the event
to the software. The software turns off the lights and
the sounding bell and opens the gates. Perform the
following for the railroad crossing system:
a. Identify the hardware and software subsystems
and specify the functionality of each of the
subsystems.
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b. Describe how the subsystems relate to and inter-
act with each other. That is, specify the subsystem
interfaces and interaction behavior.

c. Construct a system architectural design diagram
to show the relationships between the subsystems.

d. Identify and formulate safety requirements and
allocate them to the subsystems. Describe how the
subsystems will satisfy the safety requirements.

Managers of a department store want to expand into
online retailing. This means that the company needs
to develop an online system that can take orders on-
line, and ship the ordered items through a designated
national shipment carrier. To reduce labor costs, the
company wants a fully automated system. Perform
the following for this system:

a. Identify and formulate five functional require-
ments and two performance requirements for the
system.

b. Decompose the system into a hierarchy of subsys-
tems and allocate the system requirements to the
subsystems.

¢. Produce a system architectural design diagram.

If you have learned UML class diagramming, then
produce an object-oriented context diagram for the
software subsystem of the online retailing system
you produced in exercise 3.5. Discuss the useful-
ness of the context diagram for the design, imple-
mentation, testing, and maintenance of the software
subsystem.



