Chapter

Software Process
and Methodology

Key Takeaway Points

® A software process defines the phases of activities or what need to be performed
to construct a software system.

® A software methodology details the steps or how to perform the activities of a
software process. A methodology is an implementation of a process.

¢ Software development needs a software process and a methodology.

Writing programs that consist of a few thousand lines of code might be an unprece-
dented experience and a challenge for many undergraduate and graduate students.
However, in the software industry, software development for systems that consist of
millions of lines of code is a common practice. The difference between academic pro-
gramming projects and real-world software development projects is not limited to the
number of lines of code. Systems development in the real world has to overcome many
other challenges. To overcome these challenges, a disciplined approach to systems
development is required. This is commonly called a software process. The waterfall
process presented in Chapter 1 is such a process or process model. Many software
development organizations adopt the waterfall process partly due to its simplicity.
However, experiences show that the waterfall process is associated with a number of
problems. To overcome these problems, many other software process models have
been proposed. The software industry then discovered that software development
requires not only a process but also a methodology. While a process specifies the
activities to be performed to develop a software system, a methodology defines the
steps and how to perform the steps to carry out the activities of a process. In other
words, a methodology is an implementation of a process.
In summary, this chapter presents the following:

¢ Challenges of system development in the real world.
® Merits and limitations of the waterfall process.
¢ Other well-known software process models.

Chapter 2 Software Process and Methodology 17

e The theory of wicked problems and how it relates to software development.
e Agile processes and agile methods.

e An overview of the process and methodology presented in this book.

2.1 CHALLENGES OF SYSTEM DEVELOPMENT

Developing software systems in the lab is quite different than developing them in the
real world. Real-world projects are much larger and much more complex. Besides
these obvious challenges, there are others. An understanding of some of the chal-
lenges is useful for the study of software engineering. That is, it helps to understand
why computer science alone is not enough, and why we need software processes
ng to know how software processes and

methodologies help overcome the challenges. First, there are project challenges:

e Project Reality 1. Many system development projects have long development
durations, which typically range from one year to several years. Real-world
projects must meet schedule and budget constraints.

e Project Challenge 1. How do we plan, schedule, and manage the project work
without a complete knowledge of what the customer wants, and what will happen
in the next several years?

e Project Reality 2. Many system development projects require collaboration of
multiple departments or development teams. For example, many large embedded

systems involve both hardware and software components and require the software
engineering department to cooperate with hardware departments.

e Project Challenge 2. How do we divide the work and assign the interdepen-
dent pieces to the departments and teams, and be able to smoothly integrate the
components produced by the different departments and teams?

¢ Project Reality 3. Different departments or teams may use different development

processes, methods, and tools. The departments or teams may be located at
different places.

¢ Project Challenge 3. How do we ensure proper communication and coordination
among the departments and teams?

Besides project challenges, there are product challenges. Some examples are:

e System Reality 1. Many real-world systems have to satisfy a large number of
requirements and constraints including stringent real-time constraints. For ex-
ample, a mail-handling system has hundreds of requirements and constraints.
It is required to scan and process more than 40,000 mail-pieces per hour or
12 mail-pieces per second.

® System Challenge 1. How do we develop the system to ensure that these re-
quirements and constraints are met?

® System Reality 2. Requirements and constraints may change from time to time.

18 Part| Introduction and System Engineering

requirements had to change every week during the first three months due to
change requests from the customer.

® System Challenge 2. How do we design the processes and the products to cope
with changes that are often inevitable and the exact changes are impossible to
predict?

e System Reality 3. The system will evolve for many many years, creating a
maintenance challenge. For example, changes are not documented or poorly
documented, changes to the system may introduce bugs as well as deteriorate
the structure of the system. All these make the system more and more difficult
to understand, test, and maintain.

¢ System Challenge 3. How do we design the system so that changes can be made
relatively easily and without much impact to the rest of the system?

e System Reality 4. The system may consist of hardware and software components,

’\‘\ . v . -
—/72 V' use third party components and @h;plgmplsm&nl%es, and run on
multiple platforms and machines located at ;ilﬁfm@nstmc_%

® System Challenge 4. How do we design the system to hide the hardware, plat-
form, and implementation peculiarities so that changes to these will not affect
the rest of the system?

The list is not complete. There are many more challenges in the real world that
are not included. However, the list is enough to show that a scientific approach is not
adequate to tackle the challenges. We need an engineering approach. Two important
components are software process and software methodology.

2.2 SOFTWARE PROCESS §

Advances in computer science, especially nonnumeric computation and relational
database systems in the 1960s, led to a rapid expansion of computer applications in
the business sector. The existing ad hoc development processes could not satisfy the
needs of such development projects. The notion of a software development process
or software process was introduced and defined as follows:

Definition 2.1 A software process is a series of phases of activities performed
to construct a software system. Each phase produces some artifacts which are the
input to other phases. Each phase has a set of entrance criteria and a set of exit
criteria.

For example, the waterfall process, presented in Chapter 1, exhibits a strict se-

uence of development activities. The requirements phase produces the requirements

specification, the design phase produces the design, and so on. Frequently, the entrance

Chapter 2 Software Process and Methodology 19

2.3 MERITS AND PROBLEMS OF THE WATERFALL PROCESS

The conventional waterfall process defines a straight sequence of activities such as
requirements analysis, design, implementation, testing, and maintenance. The process
has been used by many companies for many decades. Before discussing its problems,
it would be fair to point out that the process does have a number Oﬁﬁ:%fhese merits
explain why the process is still in use in the software industry. Firs\t,_fﬁ'fﬁmple, straight
sequence of phases of the waterfall process greatly simplifies project planning, project
scheduling, and project status tracking. In this sense, it is deemed a “predictable”
~ process. Second, the straight sequence of functional activities allows funciion-onenied
prOJect organization. In such an organization, the functional teams are specialized in
“different functional areas such as requirements analysis, design, and implementation.
Projects are carried out by the functional teams in a pipeline manner. ier. The third
merit of the waterfall process is that the phased approach is appropriate iate for some
large, complex, long-lasting, embedded systems. Examples of such systems include
mail-sorting and routing systems, process control systems, and many other types
of computerized equipment. Such systems need to respond to numerous hardware-
generated events, process huge amounts of incoming data, and control the behaviors of
hardware devices. Usually, the capabilities or requirements of such systems are jointly
defined by the equipment manufacturer and the customer. In many cases, the system
to be developed is merely a major enhancement of the functionality, performance,
and security of an existing system. The vendor has experience and good knowledge
of the application and what the customer wants; and hence, major changes to the
requirements are rare. Once the purchase order is issued, the customer does not have
access to the equipment until the acceptance testing stage, although the customer
participates in reviews and prototype demonstrations. The phased approach allows

each phase to be performed rigorously to ensure that the system runs reliably and
satisfies performance and timing constraints.

The waterfall process has a number of serious drawbacks. First, the one strict
sequence of phases and Telated milestones makes it difficult to respond to require-
‘ments change. However, change to requirements is needed in many circumstances,
such as increased business competition, new regulations or standards, or inability to
identify all requirements. For many applications, the long development duration is
unacceptable because the requirements were identified long ago and business needs
have changed dramatically. Third, the users cannot experiment with the system to
provide feedback until it is released. Experiences show that early user feedback helps
“in detecting misconception of business needs and problems in user interface design.
Another drawback is that the customer cannot reap the benefits of the new system
during the long development period. Finally, the _customer has to accept the risk of
low return on investment if the project is canceled,THm, the design documents and
partly tested code are not worth the investment.

2.4 SOFTWARE DEVELOPMENT IS A WICKED PROBLEM

<

NEtady ol
| éS VE=E

Part| Introduction and System Engineering

= S
Properties of Tax,;@ Problem Properties of z@rohlem
. A tame problem can be corfipletely specified. 1. A wicked problem does not have a definite formulation.
. For a tame problem, the specification and the solution 2. For a wicked problem, the specification is the solution
can be separated. and vice versa.
. For tame problems, there are stopping rules. 3. There is no stopping rule for a wicked problem—you

can always do it better.
. A solution to a tame problem can be evaluated in terms | 4. Solutions to wicked problems can only be evaluated in

of correct or wrong. terms of good or bad, and the judgment is subjective.
. Each step of the problem-solving process has a finite 5. Each step of the problem-solving process has an infinite
number of possible moves. number of choices—everything goes as a matter of
principle.
. There is a definite chain of cause-and-effect reasoning. 6. Cause-and-effect reasoning is premise-based, leading
to varying actions, but hard to tell which one is the best.
. The solution can be tested immediately; once tested, it 7. The solution cannot be tested immediately and is
remains correct forever. subject to lifelong testing.
. The solution can be adapted for solving similar 8. Every wicked problem is unique.
problems.
. The solution process is a scientific process. 9. The solution process is a political process.
. If the problem is not solved, simply try again. 10. The problem solver has no right to be wrong because

the consequence is disastrous.

A

FIGURE 2.1 Properties of tame and wicked problems

of California, Berkeley. A wicked problem exhibits a number of wicked-problem
properties or wicked properties for short. These properties imply that wicked problems
are difficult to solve. In contrast, tame problems such as solving mathematical equation
systems, developing chess-playing programs, compiler construction, and operations
research exhibit nice properties. Figure 2.1 compares the properties of these two types
of problem.

Unfortunately, application software development in general is a wicked problem.
For a tame problem such as solving an equation system, the problem has a definite
formulation. The specification and the solution can be separated. The equation system
is the specification; an assignment of values to the variables is a solution. This is not
true for many application software development projects. For example, the require-
ments specification may not specify the real requirements. This is why many projects
fail because the delivered system does not meet users’ expectations. Prototypes are
often constructed to help identify real requirements. In this case, the prototype is both
the specification and the implementation because it not only specifies the features but
also how to implement the features.

The number of steps to solving an equation system is finite. Each step has only a
finite number of possible moves. This is not the case for software design—the num-
ber of possible design alternatives is limited only by the knowledge and creativity
w The process to solving an equation system stops when a solution is
found. But software projects terminate because the team has run out of time, money,
or patience. A solution to an equation system can be evaluated immediately and ob-
iectively as correct or wrong. But a software system can only be evaluated in terms

L i

Chapter 2 Software Process and Methodology 21

personal preference of the evaluator. In comparison, many software systems are sub-
WM example, a computerized sell-off on May 6, 2010, sent”

the Dow Jones Industrials to a loss of nearly 1,000 points or 10% of its value at one
time. Procter & Gamble, a stable blue chip stock, dropped almost 37% to a seven-year
low. These were caused by a simple typographical error that should have been pre-
vented. The software system has been in use for decades before the incident occurred.
is and many other software-related incidents explain why software system/
lifelong testings. While the solution to a tame problem could be adapted to solve a
similar problem, every application software development project is unique. This is
why application software is developed or custom made, not manufactured.

Software development is not a scientific process—in other words, many decisions
Wm politically and economically. For example, a good- e
enough algorithm is chosen instead of an optimal one because it is more economical
to implement, use, and maintain the good-enough algorithm. Sometimes, the choice
to use a specific programming language or DBMS is a political decision. In one
project that the author was contracted to develop, the client requested not to use a
certain product because the client had a bad experience with its vendor. Finally and
importantly, software failures could result in millions of dollars of property damages
and loss of human lives. Therefore, software developers have no right to be wrong.
Tame problems do not share this property—if the result is incorrect, then the software
developer can simply try again.

>

2.5 SOFTWARE PROCESS MODELS

Problems with the waterfall process have led researchers and funding agencies to find
abetter process that considers the wicked properties of software development. Tons of
money and effort have been poured into this research. As a result, many software pro-
cess models have been proposed. Most models adopt an iterative, rather than a strictly
sequential, process of activities. This section reviews some of these process models.

2.5.1 Prototyping Process

The prototyping process model recognizes the mismatch between the newly con-
structed software system and users’ expectations, and the challenge to deliver the
capabilities within the time and budget constraints. As a solution, a prototype of
the system is constructed and used to acquire and validate requirements. Prototypes
Mo used in feasibility studies as well as design validation. A prototype can be
very simple or very sophisticated. A simple prototype shows only the look and feel
and a sequence of screen shots to illustrate how the system would interact with a user.
A sophisticated prototype may implement many of the system functions. Prototypes
are generally classified into throwaway prototypes and evolutionary prototypes. A
throwaway prototype is constructed quickly and economically—just enough to serve
its purpose. A throwaway prototype could be reused in unit or integration testings as a
reference implementation to check whether the implementation produces the correct

1

1 a

22 Part| Introduction and System Engineering

2.5.2 Evolutionary Process

Prototypes help requirements acquisition, requirements validation, feasibility study,
and validation of design ideas. However, throwaway prototypes imply that much effort
is wasted. This is true when sophisticated prototypes are needed for feasibility study
and design validation of large, real-time embedded systems. The evolutionary process
model is aimed at solving this problem by letting the prototype evolve. It lets the users
experiment with an initial prototype, constructed according to a set of preliminary
requirements. Feedback from the users is used to evolve the prototype. This process is
repeated until no more extensions are required. For this reason, it is also referred to as
the evolutionary prototvping process model. Since the prototype is not a throwaway
prototype, it is constructed with operational functionality and needed robustness.
The evolutionary process is most suitable for exploratory types of projects, where
the exact requirements and algorithms are to be discovered from working with the sys-
tem. Many real-world projects belong to this category, including intelligent systems,
research software that aims to discover unknown things like gene sequencing, as well
as embedded systems that actively interact with the environment. The evolutionary
process is not suitable for projects that require a predictable schedule of progress.

2.5.3 Spiral Process

The spiral process proposed by Barry Boehm [32] is known for its unique feature for
Wt. As its name implies, the development process looks like a spiral, as
shown in Figure 2.2. Each cycle of the spiral is aimed at enhancing a certain aspect of
the system under development, for example, functionality, performance, or quality.
In this sense, the system evolves incrementally as the model iterates the spiral cycles.
Each cycle of the spiral selectively executes some of the following steps:

1. Determine the objectives, alternatives, and constraints for the current cycle (the
northwest corner of the spiral). The objectives, the alternative approaches to
accomplish the objectives, and the constraints that must be satisfied are identified
in this step. Project risk items are identified and prioritized.

2. Evaluate alternatives; identify and resolve risks (the northeast corner of the spi-
ral). The alternatives to accomplish the objectives within the constraints are eval-

, uated. Risks of not achieving the objectives are identified and ways to resolve

- the risks are developed. Prototyping, simulation, modeling, and benchmarking

@ are some of the techniques for risk resolution. Depending on the outcome of risk
analysis and resolution, the next step may be one of the following:

e If there are remaining risks, then the subsequent steps would be the southwest
corner, that is, planning for the next level of prototyping, followed by a new
prototyping cycle.

e Ifthe previous cycles have resolved the major known risks, then the subsequent
steps could proceed like the waterfall, as shown in the southeast corner of the
model.

e If the prototype produced during the previous rounds are operational and
robust enough to evolve into a final system, then the subsequent steps would

avtand and nica tha mentatiomn oo in tha avaliitinnasr smsentatrrmia e e dal Thoae

Commitment

Determine

e Objectives
o Alternatives
e Constraints

4

Chapter 2 Software Process and Methodology

R Cumulative cost

e Evaluate
alternatives

Risk
analysis

Ve

Risk
analysis

Risk
analysis

Operational
prototype

Risk
anal_\; -7
sis ~“Prototype 1

< e Identify and
resolve risks

23

Review —
Partition

e Plan next
phases

FIGURE 2.2 The spiral process

e Requirements
plan
A\ Life-cycle plan

e Development plan

e Integration &
test plan

Simulation,

Require-
ments

Concept of
operation

Detailed
~~_ design

Software
design

Requirements
validation

- Code

Design
V&V

~
~

~ .
N Integration

< ~ oy P
\ S & test o Dc.\elop and
\ ~ verify next
N Acceptance ~
N level product
. test

N
Implementation

\

Progression
through steps

3. Develop and verify next level system (the southeast corner). This step proceeds
like the waterfall model, as shown in Figure 2.2.

4. Plan next phases (the southwest corner). For either a new initiative or a contin-
uing project, this step defines the requirements, the life-cycle activities, and the
integration and test plan for the next phase.

2.5.4 The Unified Process
The Rational Unified Process or Unified Process (UP) [91], as shown in Figure 2.3,

consists of a series of cycles. Each cycle concludes with a release of the system. Each

cycle has several iterations. The iterations are grouped into four phases—inception,
elaboration, construction, and transition. Each phase ends with a major milestone, at

24 Part| Introduction and System Engineering

Core
workflows

Requirements

Analysis

&

Design

Implementation

Test

L 1 T .] -] .
Inception;Elaboration; Construction |Transition Inception; Elaboration, Construction

i
!

!
i
|
|

R

| Transition,
1 . :

i i | | i

¢

|
i
[
|
i
|
|
|
!
I
i

e

1
|
|
1
|
|
|
1
|
|
!
]
|
!
|
T
!

i |

I | [| I T i o !]]

P ! I N b | [
Tter, Iterli i : { : : :Iter Tter.; Ttes 1 | f i ! ; Tter.
HITH2 (vee ! i fevatone]oes lese (#0 FLUH ool e feeninee Lonejoes HD

! | . ! i i ! I ! ! : | | ! | !

Iterations Iterations
Cycle 1 } I Cycle k ——-i
Release 1 Release k

FIGURE 2.3 Illustration of the Unified Process

requirements analysis, design, implementation, and testing. The gray areas in Fig-
ure 2.3 are rough indications of the extent of the workflow activities that are carried
out during the phases. The focuses of the four phases are described below.

Inception. The first one or two iterations constitute the inception phase. This
phase produces a simplified use case model, a tentative software architecture,
and a project plan. In simple terms, a use case models a business process of
the application for which the system is being developed. Verb-noun phrases are
used to describe use cases. For example, Deposit Money, Withdraw Money, and

ec are use cases for an automatic teller machine (ATM). The use
case model contains the most critical use cases of the software system.

Elaboration. The elaboration phase consists of the next several iterations. During
this phase, most use cases are specified, and UML diagrams representing the
architectural design are produced. The most critical use cases of the software
system are designed and implemented.

Construction. During the construction phase, the remaining use cases are itera-
tively developed and integrated into the system. The system can be incrementally
installed in the target environment.

Transition. During the transition phase, activities are performed to deploy the
software system. These include user training, beta testing, defect correction, and
functional enhancement.

The UP focuses on identifying use cases and uses them to plan the iterations

1 11 1 1 r 1. 1 TR 1

Chapter 2 Software Process and Methodology

driven. The UP determines the architecture or the overall structure of the system early
in the life cycle, and uses it to guide the development of the software system. For this
reason, the UP is said to be architecture-centric. The other two features of the UP
are that it is iterative and incremental because the system is developed and deployed
iteratively and incrementally.

2.5.5 Personal Software Process

The personal software process (PSP) is a comprehensive framework that is designed
to train individual software engineers to improve their personal software processes.
PSP consists of a series of scripts, forms, standards, and guidelines that the software
engineer can apply to carry out a number of predefined programming exercises. Rather
than enforcing a specific development method, the PSP allows the software engineer to
choose the development methods. Throughout the training, the PSP helps the software
engineer identify areas for improvement. It also helps the software engineer develop
abilities that are useful in a teamwork environment, such as developing the ability to
estimate more accurately and the ability to meet commitments. As stated above, the
PSP is meant to improve the personal software process of a software engineer; it is not
meant to be a software development process. That is, after the training, the software
engineer is expected to develop and use his own software processes to produce high-
quality software. It is believed that quality increase leads to productivity increase
because the effort and time spent in testing and debugging is reduced.

The PSP Process Evolution

m PSP uses an evolutionary approach. That is, the framework
is presented in a series of predefined processes, named PSPO, PSP0.1, PSP1, PSP1.1,
PSP2, PSP2.1, and PSP3.0. Each of these processes introduces a couple of good
software engineering techniques or practices.

PSPO and PSP0.1. 'These two processes introduce process discipline and measure-
ment. In particular, PSPO introduces the baseline process, time recording, defect
recording, and defect type standard. PSPO.1 introduces coding standard, size mea-
surement, and process improvement proposal.

PSP1and PSP1.1. These two processes introduce estimation and planning. In partic-
ular, PSP1 introduces size estimation and test report while PSP1.1 covers planning
and scheduling.

PSP2 and PSP2.1. These two processes introduce quality management and design.
In particular, PSP2 presents code review and design review, and PSP2.1 introduces a
design template.

PSP3.0. This process is designed to guide the development of component-level
programs. '

PSP Script

In PSP, all processes are described using process scripts or scripts for short. Each script

B - AP U0y . 3R 2 A S . 'S S % . (VS B

25

26 Part] Introduction and System Engineering

Purpose To guide module-level program development

Problem description

PSPO0 Project Plan Summary form
Time and Defect Recording logs
Defect Type standard

Stopwatch (optional)

Entry Criteria

Step Activities Description

e Produce or obtain a requirements statement
o Estimate development time

o Fill the Project Plan Summary form

e Complete the Time Recording log

1 Planning

Design the program

Implement the design

Compile the program, fix and log all defects found
Test the program, fix and log all defects found
Complete the Time Recording log

(9]

Development

Complete the Project Plan Summary form with actual time,

3 Postmortem .
defect, and size data

e A thoroughly tested program
o o Complete Project Plan Summary form with estimated
Exit Criteria and actual data

e Completed Time and Defect Recording logs

FIGURE 2.4 PSP activities are described by scripts

exit criteria. For example, the baseline process PSPO consists of six phases: planning,
design, code, compile, test, and postmortem. This process can be described by the
script shown in Figure 2.4. Tt consists of three steps: (1) planning, (2) development,
which encompasses design, code, compile, and test, and (3) postmortem. The entry cri-
teria of a script specify the software artifacts that must be available before the process
can begin. The steps list the activities and descriptions of the activities. The exit criteria
specify the software artifacts that must be produced when the process is completed.

The postmortem step in Figure 2.4 is a unique feature of the PSP. It requires the
software engineer to complete a Project Plan Summary form with the actual time,
defect, and size data. This form is described in PSP Forms below. The software
engineer completes the form at the end of each programming exercise. The form
allows the software engineer to observe his personal software practices, identify areas
to improve, and acquire data to use in estimation.

The PSP adopts a recursive view of the development process. That is, a process
consists of a series of activities and an activity can be described by a lower-level
process. For example, the planning step in Figure 2.4 is a process, which can be
described by another script. The script may consist of a requirements step, a resource
estimation step, and a scheduling step. Similarly, the development step in Figure 2.4
can be described by a script consisting of design, code, compile, and test steps.

PSP Forms

PSP uses forms to facilitate documentation. Each form specifies the ordinary informa-

7 . e R, - - R ISR IS B

Chapter 2 Software Process and Methodology

programming language. To be consistent with the forms, the following presentation
will use the terms student and software engineer interchangeably. Some of the forms
are described below.

The Time Recording Log This form has seven columns as shown in Figure 2.5. The
Delta Time is the Stop Date and Time minus Start Date and Time minus Interrupt
Time. Each student fills the entries for each step/phase of the process in one line of the
form. For example, after completing the baseline process PSPO, the student fills one
line of the form for each of the planning, design, code, compile, test, and postmortem

steps.
The Defect Recording Log Figure 2.6 shows the Defect Recording Log form. At the

top are the 10 defect types, which are explained in Figure 2.7. Each student is required
to specify the defects detected and removed during the course of a process. For each

PSP Time Recording Log

27

Student Date
Program Program#
Instructor Language
Project Phase Start Date and Time | Interrupt Time | Stop Date and Time | Delta Time | Comments
FIGURE 2.5 PSP time recording log
Defect Types PSP Defect Recording Log
10 Documentation 60 Checking
20 Syntax 70 Data
30 Build, Package 80 Function
40 Assignment 90 System
50 Interface 100 Environment
Student Student 3 Date 1/19
Program Standard Deviation Program# 1
Instructor Brown Language C++
Project Date Number Type Inject Remove Fix Time Fix Ref.
1 1/19 1 20 Code Comp. 1
Description Missing semicolon.
Project Date Number Type Inject Remove Fix Time Fix Ref.
2 20 Code Comp. 1

Description Missing semicolon.

EIfCIIDE A & ~A or 2 NI

28 Part| Introduction and System Engineering

Summary of PSP Defect Types

ID | Defect Type Description

10 | Document Comments, messages, and manuals

20 | Syntax Spelling, punctuation, typos, and instruction formats

30 | Build, Package | Change management, library, version control

40 | Assignment Declaration, duplicate names, scope, limits

50 | Interface Procedure calls and references, I/O, user formats

60 | Checking Error messages, inadequate checks

70 | Data Structure, content

80 | Function Logic, pointers, loops, recursion, computation, function defects
90 | System Configuration, timing, memory

100 | Environment | Design, compile, test, or other support system problems

FIGURE 2.7 Summary of PSP defect types

defect, the student enters the program number, the date on which the defect was found,
the defect identification number, the type of the defect, the phase in which the defect
was introduced and removed respectively, the time spent to find and fix the defect, the
defect number that during its fix, introduces the current defect, and a brief description
of the defect including the error and why it was introduced.

The Project Plan Summary Form The Project Plan Summary form mentioned in the
last section is shown in Figure 2.8. It consists of four sections. At the top of the form
is the descriptive information, which specifies the student name, date, program name,
program number, instructor, and the programming language used. The Time in Phase
(in minutes) section specifies the Plan time for the process, and the Actual time, the
To Date time, and the To Date % time for each of the phases. For example, if a student
spent 30 minutes in the design phase for the first program, and 25 minutes in the
design phase for the second program, then the Actual and To Date times for the first
program are 30 minutes. The Actual and To Date times for the second program are
25 minutes and 55 minutes, respectively. If the total To Date time for the first program
is 117 minutes, then the To Date % time for the first program is 25.6% (i.e., 30 divided
by 117). The Defects Injected section has the same columns and rows as the Time
in Phase section and records the number of defects by phase. The Defects Removed
section is similar to the Defects Injected section and records the number of defects
removed by phase.

The PSP also includes methods to help the software engineer in estimation and
planning. In addition, PSP presents quality assurance procedures to help the software
engineer improve software quality. These are presented in Appendix A.

2.5.6 Team Software Process

Me_process (TSP) is developed by the Software Engineering Institute
(SEI) to enable team members who are trained in PSP to work together to carry out
a team project. As shown in Figure 2.9, the TSP consists of a series of cycles. Each

Chapter 2 Software Process and Methodology 29

PSP0 Project Plan Summary Form

Product Need Statement

|

Cycle 1 Lauch

Student Student 3 Date 1/19
Program Standard Deviation Program # 1
Instructor Brown Language C++
Time in Phase (min.) Plan Actual To Date To Date %
Planning 5 5 4.3
Design 30 30 25.6
Code 32 32 27.4
Compile 15 15 12.8
Test 5 5 4.3
Postmortem 30 30 25.9
Total 180 117 117 100.0
Defects Injected Actual To Date To Date %
Planning 0 0 0.0
Design 2228.6 2 2 28.6
Code 55714 5 5 71.4
Compile 000.0 0 0 0.0
Test 000.0 0 0 0.0
Total Development 7 7 100.0
Defects Removed Actual To Date To Date %
Planning 0 0 0.0
Design 0 0 0.0
Code 0 0 0.0
Compile 6 6 85.7

- Test 11143 1 1 14.3

. Total Development 7 7 100.0
After Development 0 0

FIGURE 2.8 PSPO Project Plan Summary form

1

l Cycle 2 Lauch
Strategy 1 l
Plan 1 Strategy 2
Requirements 1 Plan 2
Design 1 Requirements 2
Implementation 1 Design 2
Test 1 Implementation 2
Postmortem 1 Test 2
Postmortem 2

L |

FIGURE 2.9 Team software process

Cycle 3 Lauch

l

Strategy 3

Plan 3

Requirements 3

Design 3

Implementation 3

Test 3

Postmortem 3

Finished Product
Final Evaluation

30 Part| Introduction and System Engineering

cycle performs a series of activities. A TSP project begins with a TSP launch process
to build the team and produce a project plan. The launch process is guided by a trained
and qualified TSP coach. The process identifies the customer’s needs, assigns roles
to team members, produces an initial system concept, a development strategy, and
a plan to develop the system. The TSP team also produces a quality plan and a risk
management plan. The plans are presented to the management, which may approve
or request changes. The last step of each cycle is the postmortem. At the postmortem
meeting, the team reviews the launch process, identifies and records improvement
suggestions, and assigns follow-up items to team members.

The TSP activities of each cycle are specified in a script. Figure 2.10 illustrates
a script that is tailored to use the methodology presented in this textbook. That is, the
methodology implements the TSP process. The script shown in Figure 2.101s designed
to fit one semester of teamwork, including learning. It has been tested several times.
However, the script can be modified, or tuned to fit different situations. For example,
it could run in a shorter period. In this case, there will be only one or two cycles. It
could drop some topics, such as applying situation-specific patterns could be moved
to another course. Another alternative is running the script to produce only the design
but not the implementation.

2.5.7 Agile Processes

The waterfall process works well for tame problems because such problems pos-
sess a number of nice properties. Application software development is a wicked
problem. It needs a process that is designed to solve wicked problems. Agile pro-
cesses are such processes. Agile processes emphasize teamwork, joint application
W@ﬂgﬂ_&@gn for change, and rapid development and frequent

delivery of small incre in short iterations. Agile development is guided by agile

values, principles, and best practices. All these take into account wicked-problem
properties.

Agile Manifesto

According to the Agile Manifesto,! agile development values four aspects of soft-
ware development practices, which are different from their conventional, plan-driven
counterparts. These are listed and explained below.

e Agile development values individuals and interactions(over.processes and tools.
’ ' ® Agile development values working softwar -omprehensive documentation.
/ OO“\,N\ e Agile development values customer collaboratior ai:;fontract negotiation.

\ e Agile development values responding to change(over fpllowing a plan.

1. Agility values individuals and interactions over processes and tools.

Conventional, plan-driven practices believe that a good software process is es-
sential for the success of a software project. One conventional wisdom is that

Chapter 2 Software Process and Methodology

A Team Software Process Script

31

Purpose

To guide a team through developing a software product

Entry Criteria

An instructor guides and supports one or more five-student teams.

The students are all PSP trained.

The instructor has the needed materials, facilities, and resources to support the teams.
The instructor has described the overall product objectives.

General

The PSP process is designed to support three team modes. Follow the scripts that apply:

1.
2.
3.

Develop a small- to medium-sized software product in two or three development cycles.
Develop a smaller product in a single cycle.
Produce a product element, such as a requirements, design, or a test plan, in part of one cycle.

Week

Step

Activities

1

Review

o Course introduction and PSP review.

Read preface, introduction, and this chapter, focus on the PSP section.

LAU1

Review course objectives and assign student teams and roles.
Read TSP and overview of the agile unified methodology in this chapter.

STRATI1

Produce the conceptual design, establish the development strategy, make size estimates, and assess risk.
Apply a software architectural design style (in most cases the N-tier architecture).

o Read architectural design, and project management chapter, focus on estimation and risk management

sections.

PLANI, REQI

e Define and inspect requirements, focus on high-priority requirements.

Derive use cases from the requirements, produce use case diagrams and traceability matrix, specify
high-level use cases.

o Allocate the use cases to the cycles, produce allocation matrix.
o Review the use cases, use diagrams, high-level use case specifications, and matrices.
e Read system engineering, software requirements elicitation, and quality assurance chapters, focus on

requirements related sections, read deriving use cases chapter.

Perform cycle | domain modeling (brainstorming, domain concept classification, and domain model
visualization).
Specify cycle 1 expanded use cases, produce use case based test cases.

4 REQI, DESI e Review domain model, expanded use cases, and use case based test cases.
o Read domain modeling, actor-system interaction modeling, and software testing chapters
(use case based testing).
o Produce and review cycle 1 scenarios, scenario tables, and sequence diagrams.
S DESI1 o Derive and inspect cycle 1 design class diagram (DCD), and user interface design.
e Read object interaction modeling, deriving design class diagram, and user interface design chapters.
e Conduct cycle 1 test driven development (maybe combined with pair-programming) to fulfill 100%
6 IMP1 bral?ch coverage.
e Review unit test cases and code.
s Read implementation, quality assurance, and software testing chapters.
e Build, and integrate cycle 1, run use case based test cases.
7 TESTI e Demonstrate cycle 1 software to the customer and users, solicit and record feedback.
e Produce user documentation for cycle 1.
e Conduct a postmortem and write the cycle 1 final report.
PM1 , . ;
e Produce role and team evaluations for cycle 1.
8 LAU2 e Re-form teams and roles for cycle 2.
STRAT2, e Produce the strategy and plan for cycle 2, assess risks.
PLAN2, REQ2 | e Update and review requirements, domain model, use cases, traceability matrix, and allocation matrix.
Apply GRASP patterns, and update and review cycle 1 sequence diagrams.
9 DES? Produce and inspect cycle 2 expanded use cases and use case based test cases.

Apply GRASP, and produce and review cycle 2 scenarios, scenario tables and sequence diagrams.
Read applying responsibility assignment patterns chapter.

FIGURE 2.10 TSP development script

32 Part| Introduction and System Engineering

IMP2 Test driven develop and inspect cycle 2, accomplish 100% branch coverage.
- Review unit test cases and code.

o
L)

Build, integrate, and test cycle 2, demonstrate cycle 2 software to the customer and users, solicit and
TEST? record feedback.
Produce user documentation for cycle 2.

Conduct a postmortem and write the cycle 2 final report.

PM2 o Produce role and team evaluations for cycle 2.
11 LAU3 e Reform teams and roles for cycle 3.
STRATS3, e Produce the strategy and plan for cycle 3, assess risks.
PLAN3,REQ3 | e Update and review requirements, domain model, use cases, traceability matrix, and allocation matrix.
o Apply situation specific or Gang of Four patterns, update cycle 1 and cycle 2 design diagrams.
o Produce and inspect cycle 3 expanded use cases and use case based test cases.
12 DES3 - . o . .
¢ Produce and review cycle 3 sequence diagrams (situation-specific patterns are applied).
¢ Read applying situation-specific patterns chapter.
o Test driven develop and inspect cycle 3, accomplis 0 branch coverage.
IMP3 Test driven devel di le 3 plish 100% branch
o Review unit test cases and code.
13 o Build, integrate, and test cycle 3, demonstrate finished product to the customer and users, solicit

TEST3 and record feedback.
Produce and review user’s manual for the finished product.

Conduct a postmortem and write the cycle 3 final report.

Produce role and team evaluations for cycle 3.

Review the product produced and the processes used, identify lessons learned and propose process
improvements.

14 PM3

Completed product or product element and user documentation.
Completed and updated project notebook.
Documented team evaluations and cycle reports.

FIGURE 2.10 (Continued)

Exit Criteria

“the software quality is as good as the software process.” Although the conven-
tional wisdom still has its merits, experiences indicate that the abilities of the
team members as well as teamwork are more important. After all, it is the team
members who carry out the software process. If the team members do not know
how to design, or they do not communicate with each other effectively, then the
result won’t be good. Conventional practices place significant weight on the use
of tools. For this reason, many companies invest heavily in development tools and
environments. Some tools are good and solve the intended problems. But these
can only be accomplished by the right people, who know how. A UML diagram
editor won’t help if the software engineer does not know how to perform OO
‘d?s_iﬁljltho-ugh the editor produces nice-looking UML diagrams, these are not

necessarily good designs.

° mpraaices, agile methods value individuals and team-
work. This is because software is a conceptual product and the development
ﬁMWWMe to work together to

jointly build theSoftware product, then the abilities of the team members to in-
teract and contribute to the joint effort is essential to the success of the project.

Software processes and tools certainly matter, but individuals and interactions
are essential.

Chapter 2 Software Process and Methodology 33

2. Agility values working software over comprehensive documentation.

For years or even decades, companies spend tremendous efforts in preparing
analysis and design documents. This is partly due to standards audits and partly
due to the beliefs that “good software comes from good design documentation,
and good design documentation comes from good analysis models.” These be-
liefs are true, but only partly. Many software engineers have experienced that in
some cases it is impossible to determine the real requirements, or whether the
design works until the code is written and tested. In these cases, comprehensive
documentation won’t help and might be harmful because it gives the illusion that
a working solution has been found. Comprehensive documentation also means
less time is available to coding and testing, which are the only means in these
cases to identify the real requirements and the needed design.

Consider, for example, a software to optimize the inventory for a large corpo-
ration. The inventory consists of textual descriptions of millions of items written
by various employees during the last several decades. Numerous acquisition and
merger activities significantly increase the number of items, categories of items,
and description formats and styles. The software is required to process the inven-
tory descriptions. The objective is to simplify the inventory and reduce inventory
costs. Clearly, the requirements for the software are what the software can do
to accomplish this objective. However, without implementing the software, no-
body knows exactly what the software can accomplish. This is an example of a
wicked problem—the specification and the implementation cannot be separated.
Suppose that the requirements were somehow identified without needing to im-
plement the software. Then, the design of data structures and algorithms is a
grand challenge because it is extremely difficult to know whether the algorithms
work and to what extent. This is due to the diversity of the inventory descrip-
tions, inconsistencies, incomplete entries, typos, and abbreviation variations. A
trial-and-error approach seems to be more appropriate.

Agile methods value working software because working software is the
bottom line. After all, the development team has to deliver the working soft-
ware to the customer. Only the working software can be tested to ensure that
the software system delivers the required capabilities. In this sense, the working
software is the requirements and vice versa. The inventory description classifi-
cation project discussed above illustrates this. However, this discussion must nof
lead to the conclusion that agile methods do not want analysis and design. On the
Contrary, agile methods construct analysis and design fiodels. Nevertheless, agile .
principles advocate just barely enough modeling to help understand the problem

and communicate the design idea but no more.

3. Agility values customer collaboration over contract negotiation.

Conventional processes involve a contract negotiation phase to identify what the
customer wants. A requirements specification is then produced and becomes a
part of the contract. During the development process the customer only partic-
ipates in a couple of design reviews and acceptance testing. Many important
design decisions that should be made with the customer are made by the de-
velonment team. Althouch the development team is good in makine technical

34

Part |

Introduction and System Engineering

decisions, it may not possess the knowledge and background to make decisions
for the customer. For example, a requirement to support more than one DBMS
may not specify which DBMSs are to be supported. Technically, the team may
know which DBMSs are the best and should be supported. But the customer may
consider other factors to be more important. These include the ability of its infor-
mation technology (IT) staff to maintain the types of DBMSs, costs to introduce
such systems, and compatibility with existing systems. If the development team
makes such decisions for the customer, then the resulting system may not meet
the customer’s business needs.

Customer collaboration is essential for the success of a project. It improves
communication and mutual understanding between the team and the customer.
Improvement in communication helps in identifying real requirements and reduc-
ing the likelihood of requirements misconception. Mutual understanding implies
risk sharing; and hence, it reduces the probability of project failure. For many
projects, the exact outcome of the system, a design decision, or an algorithm is
difficult or impossible to predict. In these cases, customer collaboration is ex-
tremely important. Mutual understanding means that the development team has
a good understanding of the customer’s business domain, operations, challenges,
and priorities. This enables the team to design and implement the system to meet
the customer’s business needs.

Mutual understanding also means that the customer understands the limita-
tion of technology, which provides the means to implement business solutions;

technology alone will not solve business problems. The customer needs to under-
stand the Timitafion of the development team, as the following experience of the
author illustrates. A customer had insisted that a medium-size software product
be produced in one month, regardless that the author had indicated this was not
possible. In addition to the lack of time, the lack of qualified developers was
another challenge. After six months, the team still could not deliver; the project
failed. In this story, the customer wanted the system in one month, but no team
could meet this demand because the system had to implement a completely new
set of innovative business ideas. Customer collaboration might save the project.
For example, the two parties could try to understand each other’s priorities and
limitations, and develop a realistic agile development plan to incrementally roll
out the innovative features.

4. Agility values responding to change over following a plan.

Conventional practices emphasize “change control” because change is costly.
Once an artifact, such as a requirements specification, is finalized, then subse-
quent changes must go through a rigorous change control process. The process
hinders the team to respond to change requests. Agile methods value responding
to change over following a plan because change is the way of life, In today’s
rapidly changing world, every business has to respond quickly to change in busi-
ness conditions in order to survive or grow. Thus, change to software is inevitable.
Advances in Internet technologies enable as well as require businesses to update
their web applications quickly and frequently. The inflexibility of the conven-
tional, plan-driven practice cannot satisfy the needs of such applications. Agile

Chapter 2 Software Process and Methodology

Agile Principles

The agile values express the emphases of agile processes. To guide agile development,
the agile community also develops a set of guiding principles called agile development
principles or agile principles for short. These principles are as follows:

1. Active user involvement is L ative.

Active user involvement is required by many agile methods. This is because iden-
tifying the real requirements is the hardest part for many software development
projects. Conventional approaches spend 15%-25% of the total development ef-
fort in requirements analysis. They implement rigid change control to freeze the
requirements. These do not seem to solve the problem. It is not the lack of time
or effort: It is the inability of human beings to know the real requirements in the
early stages of the development process. Moreover, the world is changing so the
requirements ought to evolve.

Active user involvement means that representatives from the user commu-
nity interact with the development team closely and as frequently as needed.
For example, a couple of knowledgeable user representatives are assigned to
the project. They stay and work with the team or visit the team regularly sev-
eral times a week. These arrangements greatly improve the communication and
understanding between the team and the users. These, in turn, ensure that require-
ment misconceptions are corrected early, users’ feedback is addressed properly
and timely, and decisions about the system are made with the users. All these
imply that real requirements are identified and prioritized, and the system is built
to meet users’ expectations.

2. The team must be empowered to make decisions.
Agile development values individuals and interactions over processes and tools.
This principle realizes this. That is, team members are required and encouraged
to make decisions and take responsibility and ownership. To be able to do this,
the team members are required to work as a team and interact with each other
and the users throughout the project.

3. Requirements evolve but the timescale is fixed.
Unlike conventional approaches that freeze the requirements, agile processes
are designed to welcome change. This principle means that the scope of work
is allowed to evolve to cope with requirements change, but the agreed time
frame and budget are fixed. This means that new or modified requirements are
accommodated at the expense of other requirements. That is, the extra effort is
compensated by giving up other requirements that are not mission critical.

4. Capture requirements at a high level; lightweight and visual.
Agile development values working software over comprehensive documentation.
After all, the bottom line is to deliver the working system, not the analysis and
design documentation. To accomplish this, agile methods capture barely enough
of the requirements with user stories, features, or use cases written on small-
size story cards. These are visualized using storyboards or sequences of screen
shots, sketches, or other visual means to show how the user would interact with

35

36 Part| Introduction and System Engineering

change and trade off requirements because story cards and storyboards are easy
to share and manipulate.

5. Develop small, incremental releases and iterate.
Agile projects develop and deploy the system in bite-size increments to deliver
the use cases, user stories, or features iteratively. This arrangement has several
advantages: project progress is visible, the users only need to learn a few new fea-
tures at a time, it is easier for the users to provide feedback, and small increments
reduce risks of project failure.

6. Focus on frequent delivery of software products.
Before agile development, there are iterative approaches such as the spiral process
and the unified process. Agile processes differ from their predecessors in frequent
delivery of the software system in small increments. Different agile methods
suggest different iteration lengths, which range from daily to three months. For
example, Dynamic Systems Development Method (DSDM) suggests two to six
weeks while Extreme Programming (XP) uses one to four weeks. An iteration in
Scrum is called a sprint and is usually set to 30 days. The iteration duration of the
methodology presented in this book can range from two weeks to three months.

7. Complete each feature before moving on to the next.

This principle means that each feature must be 100% implemented and thor-
oughly tested before moving onto the next. The challenge here is that how do
we know that the feature is thoroughly tested? Test-driven development (TDD)
and test coverage criteria provide a solution. TDD requires that tests for each
feature must be written before implementation. Test coverage criteria define the
coverage requirements that the tests must satisfy. For example, the 100% branch
coverage criterion is used by many companies. It requires that each branch of
each conditional statement of the source code must be tested at least once.

8. Apply the 80-20 rule.

This is also referred to as the “good enough is enough” rule. The rule is based

on the belief that 80% of the work or result is produced by 20% of the system

functionality. Therefore, priority should be given to the 20% of the requirements

. that will produce the 80% of work or resilgﬁ his principle advises the devel-
opment team to direct the customer and users to identify and prioritize such
requirements. The rule also reminds team members of the diminishing return
associated with the final extra miles. This applies to features that are nice to
have, and performance optimization that is not really needed, and so forth. For
example, an optimal algorithm may not be worth the extra implementation effort
if a simpler algorithm is fast enough for the data to be processed.

9. Testing is integrated throughout the project life cycle; test early and often.

This principle and principles 5-7 complement each other. That is, testing is an
integral part of frequent delivery of completely implemented small increments
of the system. This principle is supported by test tools such as JUnit, a Java class
unit testing and regression testing tool. Using such a tool, a programmer needs
to specify how to invoke the feature to be tested and how to evaluate the test
result. The tool will generate the tests, run the tests, and check the test result, all
automaticallv. The tests can he min ac often aq desired

Chapter 2 Software Process and Methodology 37

10. A collaborative and cooperative approach between all stakeholders is essential.
Conventional approaches rely on comprehensive documentation to communicate
the requirements to the development team. Agile projects capture requirements
at a high level and light weight. Therefore, collaboration and cooperation be-
tween the development team and the customer representatives and users are
essential. The parties must understand each other and work together throughout
the life cycle to identify and evolve the requirements. Because the new system
may significantly change or affect the work habit and performance of the users,
collaboration and cooperation between the team and users are essential to the
success of the project.

2.6 SOFTWARE DEVELOPMENT METHODOLOGY

Software development requires not only a process but also a methodology or devel-
opment method. Unfortunately, the term “methodology” is often left undefined. This
leads to a certain degree of confusion. For example, methodology is often confused
with process. Process and methodology are important concepts of software engineer-
ing. The two are related but they are not the same. Below is a definition for a software
methodology:

 Definition 2.2 A software methodology defines the steps or how to carry out the
_ activities of a software process.

A process in general specifies only the activities and how they relate to each other.
It does not specify how to carry out the activities. It leaves the freedom to the software
development organization to choose a methodology, or develop one that is suitable
for the organization. The definition means that a methodology is an implementation

@ Jet-

of a process. Software development needs a proces,z"/emd 3 methodology.
= =

2.6.1 Difference hetween Process and Methodology @ <

Figure 2.11 provides an itemized summary of the differences between a process
and a methodology. While a software process defines the phased activities or what
fo do in each phase, it does not specify how to perform the activities. A software
methodology defines the detailed steps or how fo carry out the activities of a process.
A software process specifies the input and output of each phase, but it does not dictate
the representations of the input and output. A methodology defines the steps, step
entrance, and exit criteria, and relationships between the steps. A methodology also
specifies, for each step, procedures and techniques, principles and guidelines, step
input and output, and representations of the input and output. The representations
of the artifacts provided by a methodology depend on the view of the world or the
paradigm. For example, the object-oriented paradigm views the world and systems

38 Part | Introduction and System Engineering

Process Methodology
e Defines a framework of phased activities e Amounts to a concrete implementation of a process
e Specifies phases of WHAT e Describes steps of HOW
e Usually does not dictate representations of artifacts e Defines representations of artifacts
o Hence, it is paradigm-independent e Hence, it is paradigm-dependent
e A phase can be realized by different methodologies e Each step describes specific procedures, techniques,
@ and guidelines
, Examples: Examples:
o Waterfall process e Structured analysis/structured design methodology
e Spiral process (SA/SD) }
e Prototyping process ¢ Object Modeling Technique (OMT)
e Unified Process e Agile methods such as Scrum, Dynamic Systems
e Personal software process Development Method (DSDM), Feature Driven
e Team software process Development (FDD), Extreme Programming (XP),
o Agile processes and Crystal Orange

FIGURE 2.11 Software process and methodology contrasted

diagrams are created to model objects. In this sense, methodologies are paradigm
dependent. A software methodology can be viewed as a concrete implementation of
a software process. This implies that a software process may have more than one
software methodology as its implementation.

2.6.2 Benefits of a Methodology

The use of a good software development methodology is associated with a number
of benefits, including:

1. A good methodology enables the development team to focus on the important

tasks, and know how to perform these tasks correctly to produce the desired

software system.

2. A good methodology improves communication and collaboration because:
e the methodology defines a common language for modeling, analysis, and
design.
e the methodology defines the steps for effectively carrying out a development
task that everybody knows and follows.

\
|
|

3. A good methodology improves design quality and software productivity because:

e the software engineers are empowered to correctly and effectively apply the
modeling, analysis, and design concepts and tools to construct the system.

e the peer-review guidelines or checklists enable software engineers to conduct
effective inspection and peer reviews to identify flaws in the requirements
specification, design, and source code. These in turn reduce testing, debugging,
and maintenance costs.

4. A good methodology forms the basis for process improvement because measure-
ments of software quality, productivity, cost, and time to market can be defined

Chapter 2 Software Process and Methodology 39

5. A good methodology forms the basis for process automation because many of
the methodological steps can be mechanically carried out, making software au-
tomation much easier.

. A methodology that is easy to learn and use enables beginners to produce quality
software. As the beginner becomes familiar with the methodology, he can skip
T . .
some of the steps in agile development.

=2

Software development methodologies have evolved during the last several
decades. The following sections review some of the representative methodologies
proposed in this period.

2.6.3 Structured Methodologies

Structured analysis and structured design (SA/SD) methodologies were proposed in
the 1970s and reached maturity in the 1980s. They are still in use today. Structured
analysis uses data flow diagrams (DFDs) to model the business processes of real-world
applications. A DFD is essentially a directed graph, in which the vertexes represent
external entities, business processes, and data stores while the directed edges represent
een them. Divide-and-conquer is employed during structured analysis
y decomposeomplex business processes into lower-level data flow diagrams.
steps of structured analysis begin with the construction of a top-level DFD,

called the context diagram. It depicts the system as the sole process, which interacts
with external entities and external data stores. The next steps repeatedly decompose
complex processes into simpler processes. This continues until the leaf-level processes
can be easily implemented. The input, output, and their data structures, as well as the
algorithms of the processes are specified. The DFD is good for describing the existing
as well as the proposed business processes. It is not suitable for depicting the invo-
cation relationships between the software modules. This is because the relationships
between the processes of a DFD are data flow relationships while the relationships
between the software modules are control flow relationships. The so-called structured
design fills the gap.

The steps of structured design converts the data flow diagram analysis modelinto a
structure chart or routine diagram, in which the vertexes represent the subroutines, and
the edges represent function calls from high-level subroutines to their subordinates.

2.6.4 Classical 00 Methodologies

Before UML, there were classical OO methodologies, with three of them widely
known. They are the Booch Method, the Object Modeling Technique (OMT), and
the use case driven approach. These three methodologies provide the basis for the
UML 1.0 The classical OO methodologies were used by numerous software devel-
opment organizations and contributed to the bloom of the OO paradigm. But the
software industry soon discovered that it was a nightmare to integrate and maintain
systems that were developed using different methodologies. It was also very costly
to support different tools that use different methodologies. These problems called for

ATt S 31 D D ot 3 o 31 i il e ntlnn AFTTRAT £ A TTD

40 Part| Introduction and System Engineering

2.7 AGILE METHODS

Like the evolutionary prototyping model and the spiral model, all agile methods
adopt an iterative, incremental development process. However, all agile methods
follow the agile manifesto presented in Section 2.5.7. Agile processes emphasize
short iterations and frequent delivery of small increments. Although they differ in the
naming and detail of the phases, all agile methods more or less cover requireme :
ajefs,ig&mplementation, integration, testing, and deployment activities during 2{(%
‘Tteration) However, their emphases are different from conventional processes. For

miple, agile processes value working software over comprehensive documentation.
This means barely enough modeling in the requirements and design phases. This
section describes several of the most widely used agile methods. Figure 2.12 gives
a brief summary of some of the agile methods, which are described in more detail in
the next several sections. Each of these methods has a long list of principles, features,
values, and best practices. Instead of showing these, Figure 2.12 lists only three of
the most unique features of each agile method.

2.7.1 Dynamic Systems Development Method

The DSDM emerged in the early 1990s in the United Kingdom as an alternative
to rapid application development (RAD). It is a process framework that different
projects can adapt to perform rapid application development. It has been deemed by
some authors to be most suited to financial services applications. The DSDM process
is an iterative, incremental process guided by a set of DSDM principles, which are
similar to the 10 agile principles presented in Section 2.5.7. As shown in Figure 2.13,
the DSDM process consists of five phases. The first two phases are performed only
once while the other three phases are iterative:

1. Feasibility study. During this phase, the applicability of DSDM and the technical
feasibility of the project are determined. The end products include a feasibility
report, an outline project plan, and optionally a prototype that is built to assess
the feasibility of the project. The prototype may evolve into the final system.

2. Business study. During this phase, the requirements are identified and prioritized,
apreliminary system architecture is sketched. The end products include a business
area definition, a system architecture definition, and an outline prototyping plan.

3. Functional model iteration. During this phase, a functional prototype is iter-
atively and incrementally constructed. The end products include a functional
model containing the prototyping code and the analysis models, a list of priori-
tized functions, functional prototype review documents, a list of nonfunctional
requirements, and risk analysis for further development. The prototype review
documents specify the user’s feedback to be addressed in subsequent increments.
The functional prototype will evolve into the final system.

4. Design and build iteration. During this phase, the system is designed and built
to fulfill the functional and nonfunctional requirements, and tested by the users.

— 1 1 1 1 LR 1 oo 1 1 .

jjooq sty} ut paquiosap AJojopoyieur pagrun S[I3e Yl (ANV «

A[3509 00} SI 2oURUDIUTRW
Jrwoysks aoeday 'z

10 ‘QUOp SI

100fo1d J1 uonejUAWNOOP
waIsAs 20npoid |

yeaq

9SBO[I MAU
yowa yim ssaoold yeadayy 'z
9s®a[al1 JuaLIng oy} aaoxdwy '|
ADUBUIIUIETA]

asn uononpord
10§ wo1sAs 159) pue £J1119D) °7
oourwtiojiod woysAs
anoxdwi pue ajenieAd ‘|
Suiziuononpoag

12wolsnd Aq
§159) [BUOIIOUN] WIOJI "€
UOI RIS} YO 10 SALI0]S
juowedu pue 129J9S 7
21N300140I. AJ1pow/auya(y |
ASEI[AY 1511 0) SUORIN]

9S®I[a1 1X2U Y} 10J urld T
9SBAAI JXAU Y}

10§ $91103S 2} duIuLIAR(' |

Suiuuelg

Apmis Ajjiqiseay onpuo)) ‘g
uoneorjdde oy

JMOqe UOTRWLIOJUI J29][0D) '

uonelojdxy

juowkopdaq

sass®[0 91 Juaua(du]
aimyeayg Aq pping

pajuswaldur

9q 0} SaSSB[O WLIO]
0} sarnjesj eyensdeouy g

sainjeaj Suisn $193(q0

JO UONORIAUI 3] MOYS O}
sweiSerp souanbas sonpoid '1
amyedy Aq usisaq

sIoquIDuI

urea) 03 sasse[o udIssy ‘¢
siowrwesgord jonyo

0} SAI}IALIOR SSaUISNq UBIssy 'z
SIIATIOR SSauIsnq

Jo juswdo[aAap 9[npayos ‘|

aimedy £q ueg

SONIATIOR

ssauIsnq Jo saInjeaj AJuap] g
pajewoIne 2q 0}

SOI)IATIOR SSoUISNq AJ1IUap] *|

ISI'T 2Imyedy] pling

uondrosap [opow 29npold
[9pOUW [[BI2A0 AL "¢
sjopowt dnoi3 [jews dojoasq '
ySnoayirem woyskg °|

[PPOIA] [[B13AQ dopasa

juawkopdag

uornpoadsonar wea], g
OWIAP JUSWAIOU] |
SunoaTAl MaIAY Jundg

snje)s 110dar 03 SlIaquuaut

wes) 10j Sunosw wniog A[ieq ‘g

1XaU p[mq

0] MOY puR JRYM UIUISNIP

0} Suneawr Suruueyd juudg |
:uon ety Jundg

SOIIATIOR
juowdojaadp jurids Ajriuapy ¢
jurds e pajjeo

JUWIAIOU] UE UIYIIM PIIOAIP

2q ueod jeY) sjuauannbar
Kyrorrd-doy Ajnuapy 7

(8opyonq 10npoad) syuswarmbar

aznuoud pue Ajruapy ‘|
BunadA Sutuueld asea[y

ssaursnq o} Jordul $sassy '
wa)sks Aojdog °1
uopejudwRfdury

159} B)2q 1ONpUO)) T
waIsAs ping |
uoneId)y pring pue udisa

adKy0y01d
aroxdde pue ‘maraar ‘ping ‘g
Ayneuonouny
ad£jor01d Ajnuapy *[
uonEId)] [DPOJA [BUCdUN

UOTIN[OSAI SIY "¢
ug1sap [BIN1IYIIY T

sjuawarmbar
paznuond sonpoid |
Apnmyg ssouisng

syyst AJnuapt g

100fo1d 10
INASA Jo AufIqens ssassy |
Apmg Anpqrseay

yuowkorda(g °g

Surnsey uoneadauyg -
Funuwreaford

1redjjuowrdojeaap UaALIP-1S], 9

weaSeIp ssepo udiso(g

Surpepowr 101ARYAY

Surepowt

UOTIOBISIUI J010B-WDISAS ¢

Surepowr urewo(‘g

oFuryd SurEpOWWoNY |

:uon eIl Yory duing

~

uSISop [RINIOINYITY
SjuWRIOUI

01 50510 9sn UBISSY "¢

SISO 98N QALIA(] ‘T
syuawalinbar

aznuond pue annboy °|

Sunuuerdarg

SINAIY APAD-OT

JooM B SINOY OF S NIOM e
parordwoo st ysey v
I9AQUAYM AT B SaWIT) Auvul
plIng pue uoneIdoul e
i Aue 1u a1eymAur 9pod
Aue 9Furyd ULO SUOAUY

sjoofoid uaarp
-ued 10 o18e 10j 2[qEING ®
spiing 1en3al
pue ‘uonoadsur pue maradl
“uaurefeurul UOHRINGYUOD)
UQALIP-[opoOw
PUE UDALIP-2INBI]

ssa00xd
aaoxdwr o3 J0adsonjar wea, e
uonesIUNWWod droxdut 0}

Suneow snye)s A[iep ANUIW-G| o

$9]0Y WR9], pue ‘IaumQ

1oNpoIJ ‘I9)SBIAl WNIS opn[ou] e

sjosfoxd uaatp
-uepd 10 opIdv 10J 9[qRIING
ordounid gz-(8 uo aseq e

dX PU® $82001J

payluf) feuoney yim
SYIOM 1R} JIOMOWRI] e

sy00foxd
wea) [[ews 10 931e[‘USALID
-ue[d 10 a[ide 10] A[qEING o
s1odo[aaap
PoUOSEas puE SIOUUIFeq 10,

TN Suisn
JI0MUWED) 10] JOOGH00O Vo

saamyea] £y

dx

aad

WNEDS

nasa

«NNOY

P R | DS T

EInIIDE 2 49 .

42 Part | Introduction and System Engineering

Feasibility
study

Business study

User approval &
user guidelines

Agree schedule

Create
functional{
prototype

Identify
\functional
prototype j&

Functional
- "moxdel‘ j
 iteration

" Implemen-
tation

business
impact

Review prototype Deploy system

Identify
design

Create
design
prototype

/ Design .
buﬂd 1teration

Agree schedule

/ FIGURE 2.13 Process of the Dynamic Systems Development Method

Slnﬂwt_w_l} During this phase, the system is installed in the target environ-
ment and user training is conducted. The end products include a user’s manual
and a project review report, which summarizes the outcome of the project and
what to do in the future.

2.7.2 Scrum

Scrum is a framework that allows organizations to employ and improve their software
development practices. It consists of the Scrum teams, the roles within a team, the time
boxes, the artifacts, and the Scrum rules. Scrum is an iterative, incremental approach
that aims to optimize predictability and control risk. As displayed in Figure 2.14, there

e - Daily Scrum
L@ 4 Meetin,
_Qﬁ Y% ’
(Release Planning . Sprint
(:\ Sprint Planning Retrospection
24 Weeks

-

Q« » Potentially
i > ? Product

/ Product Backlog Sprmt Backlog Increment

Chapter 2 Software Process and Methodology

is a release planning meeting. It determines the product backlog and the priorities of
the requirements as well as planning for the iterations, called sprints. During the sprint
iteration phase, the team performs the development activities to develop and deploy
increments of the product. Each sprint begins with a sprint planning meeting, at which
the team and the product owner determine which items of the product backlog are to
be delivered next and how to develop them. Each sprint lasts 30 days, but a shorter
or longer time period is allowed. One distinctive feature of the Scrum method is its
15-minute daily Scrum meeting. It allows the team members to exchange progress
status to improve mutual understanding. Another distinctive feature of the Scrum
method is the team retrospection at the end of each Scrum sprint. This meeting allows
the team to improve its practices.

2.7.3 Feature Driven Development

As shown in Figure 2.12, the Feature Driven Development (FDD) method consists of
six steps or phases. The first three are performed once and the last three are iterative.
The FDD method is considered more suitable for developing mission critical systems
by its advocates. The six phases of FDD are briefly described as follows:

1. Develop overall model. During this phase, a domain expert provides a walk-
through of the overall system, which may include a decomposition into subsys-
tems and components. Additional walkthroughs of the subsystems or compo-
nents may be provided by experts in their domains. Based on the walkthroughs,
small groups of developers produce object models for the respective domains.
The development teams then work together to produce an overall model for the
system.

2. Build a feature list. During this phase, the team produces a feature list representing
the business functions to be delivered by the system. The features of the list may
be refined by lower-level features or functions. The list is reviewed with the users
and sponsors.

3. IML&%Dmﬂng this phase, the team produces an overall plan to guide
the incremental development and deployment of the features, according to their
priorities and dependencies. The features are assigned to the chief programmers.
The chief programmer is the main decision maker of the team. This team orga-
nization is referred to as the chief programmer team organization. The classes
specified in the overall model are assigned to the developers, called class owners.
A project schedule including the milestones is generated.

4. Design by feature, build by feature, and deployment. These three phases are iter-

ative, during which the increments are designed, implemented, reviewed, tested,
and deployed. Multiple teams may work on different sets of features simultane-
ously. Each increment lasts a few days to a few weeks.

The roles and their responsibilities of an FDD project are similar to the com-
mon job titles. These include project manager, chief architect, development manager,
chief programmer, class owner, domain expert, release manager, toolsmith, system

~dt PR DR S U RS PR

oD

43

o

Part |

Introduction and System Engineering

2.7.4 Extreme Programming

Extreme programming or XP is an agile method suitable for small teams facing vague
and changing requirements. The driving principle of XP is taking commonsense
principles and practices to extreme levels [21]. For example, if frequent build is good,
then the teams should perform many builds every day. The XP process consists of six

1. Exploration. During this phase, the development team and the customer jointly
develop the user stories for the system to the extent that the customer is convinced
that there are sufficient materials to make a good release. A user story specifies
a feature that a specific user wants from the system. For example, “as a patron, I
want to check out documents from the library system.” The development team also
explores available technologies and conducts a feasibility study for the project.
This phase should take no more than two weeks.

2. Planning. During this phase, the development team and the customer work to-
gether to identify the stories for the next release, including the smallest, most
valuable set of stories for the customer. The stories should require about six
months of effort to implement. A plan is produced for the next release. This
phase should take no more than a couple of days.

3. Iterations to first release. During this phase, the overall system architecture is
defined. The customer chooses the stories, the team implements them, and the
customer tests the functionality. These activities are performed iteratively until
the software is good for production use. Each iteration lasts from one to four
weeks.

4. Productionizing. During this phase, issues such as performance and reliability
that are not acceptable for production use are addressed and removed. The system
is tested and certified for production use. The system is installed in the production
environment.

5. Maintenance. According to Beck [21], this phase is really the normal state of
an XP project. During this phase, the system undergoes continual change and
enhancements, such as major refactoring, adoption of new technology, and func-
tional enhancements with new stories from the customer. The process is repeated
for each new release of the system.

6. Death. The system evolves during the maintenance phase until the system com-
pletely satisfies the customer’s business needs and hence no more customer stories
are added. When this happens, the project is done and enters the death phase, dur-
ing which the team produces the system documentation for training, repair, and
reference. The project also enters the death state if it cannot live to the customer’s
expectation.

2.7.5 Agile or Plan-Driven

Although agile methods are getting increasingly popular in the software industry, that
does not mean that they do not have limitations. In [35], Boehm and Turner point out

1 1 cer 1 1 1 1 1

Chapter 2 Software Process and Methodology 45

dominates the other.” Agile methods work well for small to medium-size projects that
face frequent changes 1 requirements. Plan-driven approaches remain the de facto

choice for large, complex systems and equipment manufacturers where predictability
_is important, | ﬁégefore, both aéé;gggl;es are needed. According to Boehm and Turner
[35], plan-driven and agile methods “have shortcomings that, if left unaddressed, can

lead to project failure. The challenge is to balance the two approaches to take advantage
of their strengths and compensate for their weaknesses.” That is, we need methods
that can adapt to the cultures and circumstances of different software development
projects and organizations. Such methods include Crystal Orange [50], DSDM [140],
FDD [119], Lean Development [124], lightweight unified process (LUP) [104], and
the methodology presented in this book.

2.8 OVERVIEW OF PROCESS AND METHODOLOGY
OF THE BOOK

This section presents the agile unified process (AUP) and the methodology used in

this book. As shown in Figure 2.15(b), the process could be viewed as a vertical
slicing of the waterfall process. Each slice denotes an iteration, which ranges from
one week to three months. The process can be viewed as consisting of two axes. The
horizontal axis represents the iterations and the vertical axis represents the workflow
activities of each iteration. Each iteration performs most of the workflow activities
as the waterfall process except that they deal only with the use cases allocated to the
iteration. As shown in Figure 2.15(b), before the iterations, there is a brief planning
phase, which lasts about a couple of weeks, to identify requirements, derive use cases,

Iteration
workflow activities
I

4 >__._....

I
I
I
. . I
l Requirements Analysis ’ ‘ Reqm e ments

‘

[Design ‘ ‘

L

|
|
|
T
nalysis
i
|
|
I
|
T
|
0 i |
’ Implementation Implementation : ‘
T
|
|
|
|
i
I
I
|
|
]
|

S

[Testing l ‘ :Testing:

l 1

L Deployment ‘ Deployment

T T

Iterations
B
L

——P Major time line ~———» Minor time line

Planning
phase v

|

.

i

|

1

|

l

l

;

5

i

, ; .
l i |l|

1 | |

[

[

T

|

L

[

|

|

[

| |

i 1

(a) Waterfall Process (b) Agile Unified Process

EIPIIDE O 48 wAr_o 00— 0 ot

46 Part I Introduction and System Engineering

Use case-iteration
i allocation matrix

Business goals l Customer

& needs feedback | A i
. . ccommodating
Current situation Requirements Change

Acquiring -
Requirements l Iteration use cases

Domain Modeling J— _____ |

Requirements

Domain model ¢ Domain model

]f)erlvglg U.se Cases Actor-System Interaction
rom Requirements Modeling &

Abstract & high-level use User Interface Design

cases, use case diagrams Expandeq use cases
w & Ul design

Allocating Use Cases

S

& Subsystems Behavior Modeling & e
to Tterations Responsibility Assignment
N N Behavior models
Use case-iteration ¢
allocation matrix 3 Deriving Design Class |, |
Producing an Diagram
Architecture Design Design class diagram
A 4
Software
architecture Test-Driven Development,
Integration, & Deployment
(a) Planning Phase (b) Tterative Phase — activities during each iteration

————9 Dataflow =——p Control flow & data flow
FIGURE 2.16 Overview of the agile unified methodology

and assign them to the iterations. Changes to the requirements, if any, are addressed
during the requirements phase of each of the following iterations. Requirements
change may lead to changes to the list of use cases and the delivery schedule of the
use cases.

Figure 2.16 shows the steps of the agile unified methodology (AUM), along with
their input, output, and relationships. The methodology consists of two main phases:
(a) the planning phase, and (b) the iterative phase. During the planning phase, the
development team meets with the customer representatives and users to identify the
requirements and derive use cases from the requirements. The development team
also produces an architectural design and a plan to develop and deploy the use cases
during the iterative phase. Use case diagrams are produced during the planning phase
to show the use cases, and subsystems and components that contain the use cases.
Consider, for example, a library information system (LIS). The system may have a
few dozen requirements. In illustration, three of them, labeled R1, R2, and R3, are

R1. The LIS must allow patrons to checkout documents.
R2. The LIS must allow patrons to return documents.

R3. The LIS must allow patrons to search for documents using a variety of search

Chapter 2 Software Process and Methodology 47

LIS/Circulation ————— ———| subsystem i ‘
name é(§ €

Search for Document (‘ N 6’6
Checkout Document
Patron R :

-
-

M= clbgien

subsystem
boundary

- Actor-use case
association

Return Document

FIGURE 2.17 A use case diagram for a library information system

From these requirements, three use cases are derived—Checkout Document, Re-
turn Document and Search for Document, respectively. The LIS has many other
requirements and use cases besides these. A mechanism to partition a large set of
use cases is needed. Use case diagrams are useful for organizing the use cases into
subsystems so that each subsystem can be dealt with separately. A use case diagram
displays the use cases of a system or subsystem, and relationships between the use
cases and system users called actors. As Figure 2.17 exhibits, the “circulation sub-
system” of the LIS has three use cases. Similarly, other use case diagrams could
display the use cases of the “cataloging subsystem” and “purchasing subsystem,”
respectively. These subsystems may be assigned to different development teams to
design and implement.

During the iterative phase, the use cases are developed and deployed to the target
environment iteratively according to the schedule produced in the planning phase. In
particular, each iteration performs the following steps for the use cases assigned to
the iteration.

equirements Change

Requirements change is common for many software projects. Such change, if any, is
processed at the beginning of each iteration. Change to requirements leads to change
to use cases as well as to the plan to develop and deploy the use cases. After making
these changes, the development continues with the following steps according to the
changed iteration schedule.

ConductDomain Modeling

omain modeling is a process to discover important domain concepts. For example,
important domain concepts of a library system include user, patron, phone num-
ber, document, book, periodical, checkout date, checkout duration, due date, loan,

48 Part| Introduction and System Engineering

(A7
il AR

User
ID: String
password: String Loan
phone: String date: Dat
Qe ate: Date
address: String due- Date Document Eeer e e
~) - Str _| Domain concepts
: c.allI'\Ium'. String | -~ describing properties
—————— | title: Strmg. - of 2 domain concept
b Patron } Document | author: String .
atron : P
T publisher: String
- Checkout
limit: Integer } > * | pubDate: Date
~ I
Aks‘soéiaktift)‘:hlr’élé:ﬁk)gég ip ?
showing that Patrons | |
Librarian ¢he?k°1?§ d"c“mems - Book Periodical
role: String - copies: Integer duration: Integer

FIGURE 2.18 Sample domain model for a library system

through communication with the customer representatives, users, and domain ex-
perts. The domain concepts are classified into classes, attributes of the classes and
relationships among the classes. The result is called a domain model, visualized by
using a UML class diagram. A sample domain model for a library system is shown
in Figure 2.18.

W
Usersinteract with the system to obtain the services provided by the system. Actor-

system interaction modeling specifies how users interact with the system to carry

out the use cases. The specifications are called expanded use cases. In illustration,
Figure 2.19 shows an expanded use case specification for the Checkout Document

ctor-System Interaction Modeling

UCI: Checkout Document

Actor: Patron System: LIS
0. System displays the main menu.
1. This use case begins with patron 2. The system displays the
clicks the ‘Checkout Document’ ‘Checkout’ menu.
button on the main menu.
3. The patron enters the call number 4. The system displays the document
of a document to be checked out and details for confirmation.
clicks the ‘Submit’ button.
S. The patron clicks the ‘OK’ button 6. The system (updates the database
to confirm the checkout. and) displays a checkout complete
message.

7. This use case ends when the patron
clicks the ‘OK’ button on the check
out complete dialog.

AR A 4N o~ . P

Chapter 2 Software Process and Methodology 49

e

Aﬁw heckoutGUI : Checkout : DBMgr l: Loan d:Document
S ;k : Controller ; 7

I T
L i

1
<<call number>>

—» [—
d := getDocument —
3 d := getDocument]
PR —— . .
Patron (callNo: String): (callNo: String):

I >>T
| <<document detail ! Document Document

jE———

—_—
<<OK>> msg := checkout
————————— (callNo: String):

1
1
1
1
1
1
1
1
1
1
create(p:Patron, d: Document) D
1
1

T String save(l:Loan) !

_________ I setAvailable(false:booiean) 7
<<QK>> ! H]
: 1
>l< X

Tsave(d:Document ! |
1 X |

] = =
T

FIGURE 2.20 Object interaction modeling for Checkout Document

L

use case. The left column of the tabular specification shows the user input and user
actions while the right column displays the corresponding system responses.

Perfor \Behaviaral Modeling

or-system interaction modeling does not specify the computation or algorithms
that process the user requests. This is the concern of behavioral modeling. Consider,
for example, in step 3 of Figure 2.19, the patron enters the call number of the document
to be checked out. To show the result in step 4, the system has to process the patron
request. This involves background processing performed by the software objects.
Behavioral modeling describes how the objects interact with each other to process the
request. In illustration, the sequence diagram in Figure 2.20 shows how the request
is processed. In particular, the rectangles across the top of the sequence diagram
represent the objects that participate in the interaction. The vertical dash lines represent
the lifelines of the objects. That is, the objects are created and exist in the system. The
solid arrow lines represent function calls between the objects. The dashed arrow lines
represent the interaction between the actor and the system. The diagram in Figure 2.20
may be interpreted as follows. It begins with the Patron submitting the document’s
“call number” to the Checkout GUI object, which relays the request by calling the
getDocument(...) function of the Checkout Controller object. The latter retrieves the
Document object from the database. It also creates a Loan object and saves it to the
database. Finally, it updates and saves the Document object.

Design Class Diagram

ehliavioral modeling and design produce sequence diagrams, state diagrams, and
activity diagrams. These diagrams specify the design of the algorithms that implement
the business processes. It is not convenient to implement the classes from these
dlagrams because a class may appear in several diagrams. For example, the Document

Al Al /L L Ve TN it m e BT s TN i e n A

50 Part| Introduction and System Engineering

DBMgr

CheckoutController

save(l:Loan)
save(d:Document)

getDocument(callNo: String):Document

getDocument(callNo: String):Document
checkout(callNo: tring): String

4......._...._._

User

A
i
|
I

T
|
]

$ CheckoutGUI

ID: String

Loan

password: String
phone: String
address: String

due: Date

T
I
I
I
I
I
I
I
I
date: Date :
|
i
A 4

create(p:Patron, d:Document)

[

Patron

Patron

Document

callNum: String

.
1
I
H Document

ld . .
limit: Integer

title: String
author: String
publisher: String
pubDate: Date
available: boolean

Borrow » *

setAvailable(b:boolean)

FIGURE 2.21 A design class diagram with implementation order
f———g—ﬁ-___.,ﬁ

The software team wants an integrated view of the design. This integrated view is
created by using a UML class diagram, called a design class diagram. In illustration,
Figure 2.21 depicts a design class diagram that is derived from the sequence diagram
in Figure 2.20. The dashed arrow lines in the design class diagram represent uses or
dependence relationships between the classes.

Implementation, Integration Testing, and Deployment

During test-driven development (TDD), the classes that implement the use cases of

the current iteration are implemented and tested. The classes are integrated and tested

to ensure that they work with each other. Finally, the software system that implements
the use cases of the current iteration is installed and tested in the target environment.

SUMMARY

Software development faces project as well as prod-
uct challenges. To take on these challenges, a software
process is needed. However, the conventional water-
fall process is associated with a number of problems.
The reason is that it is a process for solving tame prob-
lems but application software development in general
is a wicked problem. The quest for a better process
leads to the creation of a number of software process

models with agile processes as the latest member of
tha ~lih

While a software process specifies the phased ac-
tivities, a methodology describes the steps or how to
carry out each of the activities of a process. The dif-
ferences between a process and a methodology are
discussed in this chapter. A software methodology
is influenced by the software paradigm adopted to
develop the software system. This is because a
paradigm determines how the development team
views the real world and systems. This, in turn, de-

torminec the hacie hnildine hlacke nf the enftware

system and the development methodology. For exam-
ple, the OO paradigm views the world and systems
as consisting of interrelated and interacting objects.
This implies that the building blocks of an OO sys-
tem are objects. Thus, an OO software development
methodology must describe how to perform OO mod-
eling, analysis, design, implementation, and testing
activities.

The advent of agile processes and methods re-
flects a significant advance in recognizing the wicked-
ness of software development. The agile manifesto,

FURTHER READING

Chapter 2 Software Process and Methodology 51

agile principles, agile processes, and agile methods
are all designed to tackle software development as a
wicked problem. Although agility is rapidly increas-
ing its popularity in the software industry, conven-
tional plan-driven development approaches will stay
for a long period of time because these approaches
also have their home grounds in the software indus-
try. Thus, the so-called adaptive approaches, which
could be tailored to fit agile, or plan-driven develop-
ment, are attractive.

The spiral model, the personal software process, team soft-
ware process, and the Unified Process are described in
[32, 86, 87, 91], respectively. The classical OO method-
ology OMT is described in [131], which defines many of
the UML notations. The methodology is revised by Blaha
and Rumbaught to use UML 2.0 [30]. An excellent presen-
tation of OO analysis and design using UML and patterns
is found in [104].

The agile methods presented in this chapter are detailed
in [21, 52, 119, 140]. Other agile methods include Crystal

CHAPTER REVIEW QUESTIONS

-

Orange [50], Lean Development [124], Adaptive Software
Development [80], and agile modeling [11]. Abrahamsson
et al. [2] provide an excellent briefing and comparison of
the various agile methods. In [15], Avison and Fitzgerald
review the history of software development methodologies
and suggest a number of future directions. The proceedings
of the annual Agile Development Conference publish pa-
pers on various aspects of agile development. Other papers
of interest include [35, 69, 88, 126, 144, 145].

1. What is a software process, and what are the process
models presented in this chapter?

2. What are the strengths and weaknesses of the waterfall
process?

3. What is a software development methodology?
What are the differences between a process and a
methodology?

4. What are agile processes and agile methods? What are
the life-cycle activities of the agile methods presented
in this chapter?

EXERCISES

5. What are the properties of tame problems and wicked
problems, respectively?

6. Why is software development in general a wicked
problem?

7. How do agile processes tackle software development
as a wicked problem?

8. Will agile development replace the conventional ap-
proaches such as the waterfall process?

2.1 What are the similarities and differences between the
conventional waterfall model and the Unified Pro-
cess model? Identify and explain three advantages

2.2 Write an essay about how a good process and a good
methodology help tackling the project and product
challenges. Limit the length of the essay to five pages,

52 Part| Introduction and System Engineering

2.3 Write a brief essay on the differences between a soft- the spiral process, the Unified Process, and an agile
ware process and a software methodology. process.
2.4 Write an essay that discusses the following two b. What are the pros and cons of each of these
issues: processes.
a. The pros and cons of plan-driven development and ¢. Which types of projects should apply which of
agile development processes, respectively. these processes?
b. Whether and why agile development will, or will 2.6 Explain in an essay why the waterfall process is a
not, replace plan-driven approaches. process for solving tame problems.

2.5 Write a short article that answers the following 2.7 Explain in an essay how agile development tack-
questions: les application software development as a wicked
a. What are the similarities and differences between problem.

