Chapter

Introduction

— .
Key Takeaway Points™ "" -

s Software engineering aims to significantly improve software productmty and
software quality whil€ reducing software costs and time to market.

e Software engineering consists of three tracks of i 1nt<_3ract1ng life cycle activities—
software development, software quality assurance, and software project manage-
ment activities.

¢ Object-oriented (OO) software engineering is a specialization of software engi-_
neering. It views the world and systems as consisting of objects that interact with

\ each other.

Computers are used in all sectors of our society. It is difficult to find a hospital, school,
retail shop, bank, factory, or other organizations in the United States that does not
rely on computers. Our cell phones, cars, and televisions are also based on computer-
powered platforms. The driving force behind the expanding use of computers is
the market economy. However, it is software that makes the computers work in the
ways we want. Software or computer programs consist of thousands or millions of
instructions that direct the computer to perform complex calculations and control the
operations of hardware devices. The demand for computer software has increased
rapidly in recent years. In 2009, global software production reached $985.70 billion,
growing at 6.80% annually from 1999 to 2009. The Bureau of Labor Statistics shows
that from 2010 to 2020 the total number of jobs in application development software
engineer and system analyst positions is expected to increase from 520,800 to 664,500
(27.6%) and from 544,400 to 664,800 (22.10%), respectively. To be able to perform
the work required of an application development software engineer or system analyst,
an education in software engineering is highly recommended.

1.1 WHAT IS SOFTWARE ENGINEERING?

Software systems are complex intellectual products. Software development must en-
sure that the software system satisfies its requirements, the budget is not overrun,
and the system is delivered according to schedule. To accomplish these goals, the

Chapter 1

4

the need for an enAgineering approach to software production. Since then, software
engineering has become a discipline and remarkable progress has been made. The
efforts that have taken place in the field have led to the following definition.

Definition 1.1 Software engineering as a discipline is focused on the research,
education, and application of engineering processes and methods to significantly
increase software productivity and software quality while reducing software costs
and time to market.

are the means to accomphsh these goals. These processes and methods are classified
into three sets of activities: development quality assurance, and project manage-
ment activities. The development activities transform an initial system concept into
In operational system. The quaht}g assurance activities ensure that the development
activities are carried out correctly and that the artifacts produced by the activities
are correct. These ensure that the desired software system is produced and delivered.
Project management activities plan for the project, schedule and allocate resources
To the developm&?and quality assurance activities, and ensure that the system is
developed and delivered on time and within budget.

1.2 WHY SOFTWARE ENGINEERING?

Introduction 3

First, software is expanding into all sectors of our society. Companies rely on software
to run and expand their businesses. Software systems are getting larger and more
complex. Today, it is common to develop systems that contain millions of lines of
source code. For many embedded systems, software cost has increased to 90%—95%
‘of the Total system cost from 3%—10% two decades ago. Some embedded systems
use application specific integrated circuits (ASIC) and firmware. These are integrated
circuits with the software burned into the hardware. They are costly to replace; and
hence, the quality of the software is critical. These call for a software engineering
approach to system development.

Second, software engineering supports teamwork. which is needed for large
system development. Large software systems require considerable effort to design,
‘implement, and test. A typical software engineer can produce an average 50100 lines
of source code per day. This includes the time required to perform analysis, design.
implementation, integration, and testing. Thus, a small system of 10,000 lines of
code would require one software engineer to work between 100 and 200 days or
5 to 10 months. A medium-size system of 500,000 lines of source code would re-
quire a software engineer to work 5,000 to 10,000 days or 20 to 40 years. It is not
acceptable for most businesses to wait this long for their systems. Therefore, real-
world software systems must be designed and implemented by a team, or teams

~ ~ . — - 1. . o~ . . AN L

bys
%J@Ci S

Lo wm- jZJS’fc/
oléue(opwwt

S1z<e 5.

4 Part | Introduction and System Engineering

40 software engineers to work for one year. When two or more software engineers
K N \ «(\Q/ work together to develop a software system, serious conceptualization, communica-
N

6

tion, and coordination problems arise.

{ Conceptualization is the process of observing and classifying real-world phe-
nomena to form a mental model to help understand the application for which the
system is built. Conceptualization is a challenge for teamwork because the software

B engineers may perceive the world differently due to differences in their education,

- cultural backgrounds, career experiences, assumptions, and other factors. The an-

cient story about four blind men and an elephant illustrates this problem. The four
blind men wanted to know what an elephant looked like. They obtained permission
to touch the elephant. One blind man touched one leg of the elephant and said that
an elephant was like a tree trunk. The other three touched the elephant’s stomach,
tail, and ear, respectively. They said that an elephant was like a wall, a rope, and
a fan. We as software developers are like the four blind men trying to perceive or
understand an application. If the developers perceive the application differently, then
how can they design and implement software components to work with each other?
Software engineering provides a solution. That is, the modeling techniques presented
in this book help the software engineers establish a common understanding of the
application domain and the business processes of the application.
When a team of software engineers work together, they need to exchange their
_ {(7 understanding and design ideas. However, the natural language is too informal and
often leads to misunderstanding. Software engineering provides the Unified Mod-
\[\\)W eling Language (UML) for software engineers to communicate their ideas. Finally,

o when teams of software engineers work together, how can they collaborate and co-
e ordinate their efforts? For example, how do they divide the work and assign the
pieces to the teams and team members? How do they integrate the components de-
signed and implemented by different teams and team members? Again, software
engineering provides a solution. That is, the agile unified methodology presented in
this book lets the software engineers collaborate in a way that everybody understands
and follows.

>
\\x

r
VAR
VS

1.3 SOFTWARE LIFE-CYCLE ACTIVITIES

Software engineering focuses on three tracks of activities as Figure 1.1 exhibits.
These activities take place simultaneously throughout the software life cycle.

1. Software developm ‘ocess. A software development process transforms the

initial system concept into the operational system running in the target environ-
ment. It identifies the business needs, conducts a feasibility study, and formulates
the requirements or capabilities that the system must deliver. It also designs, im-
plements, tests, and deploys the system to the target environment.

2. Software quality assurance. Software quality assurance (SQA) ensures that the
development activities are performed properly, and the software artifacts pro-
duced by the development activities meet the software requirements and desired

Aaliter ctandardn

Chapter 1 Introduction

-

W GNP

Ve /
Software 7 Software / Software
Development ,/ Quality / Project

Process ,/ Assurance ,/ Management
7/

FIGURE 1.1 Three tracks of life-cycle activities

3. Software project management. Software project management oversees the control
and administration of the development and SQA activities. Project management
activities include effort estimation, project planning and scheduling, risk man-

agement, and project administration, among others. These activities ensure that
the software system is delivered on time and within budget.

1.3.1 Software Development Process

A software development process is often called a software process. The need for a
process is similar to custom home construction and many other major undertakings.
The activities of custom home construction include acquisition of home buyer re-
quirements, custom home design, build, inspection, and delivery. A software process
consists of a series of phases of activities performed to produce the software system.
In some cases, the software system is a part of a larger system. For example, telecom-
munication systems, mail processing systems, industry process control systems, and
medical devices use software to process events and control the hardware. These sys-
tems are called embedded systems. In these cases, the software process is a part of a
bigger process called the system development process or system engineering process.
_Slstem engineering considers the total system rather than the software system alone.

During the history of software engineering, many software process models are
proposed. Among them are the waterfall, prototyping, evolutionary, spiral, unified,
and agile processes. Figure 1.2 shows the well-known conventional waterfall process,
adapted from a traditional engineering discipline. The process takes into account
system engineering activities, that is, system requirements definition, system design,
and system requirements allocation. The phases of the waterfall process are described
below.

System Requirements Definition, System Design, and Allocation

These are system engineering activities often performed for embedded systems.
System requirements definition identifies the capabilities for the total system and

6 Part| Introduction and System Engineering

[embedded or softwarel
hardware system] l

~ System Requirements
Definition, System Design, &
__ Allocation -

allocated system
[software-only requirements o

system] [Soffware Requirements | —
Analysis <

software requirements
specification |

y
[SoftwareDesign [
software design document !
| Coding & Unit Testing [

executable components

v

~ Integration &
Integration Testing

integrated software
A4
| Acceptance Testing |
field operational system

v

| Maintenance]

FIGURE 1.2 The waterfall model for software development

for a radio communication system (RCS). The system is similar to a cellular network
except that it has only one high-power base station that serves an area much larger
than a cell in a cellular network. The system requirements specify the capabilities for
the whole system. The following are four of the many system requirements identified.

R1. The RCS shall allow mobile subscribers to initiate calls to other mobile
subscribers and land-line telephones.

o L) R2. The RCS shall allow mobile subscribers to answer calls from other
@ >\\ subscribers.
| N

N R3. The RCS shall provide call accounting to capture and record mobile calls
’QJ\ and bill to the subscriber accounts.
\}x\ N R4. The RCS shall allow authorized account administrators to manage sub-
%g scriber accounts.

System design determines the major subsystems of the total system and specifies
the relationships between the subsystems. These are depicted in a system architectural
design diagram. Figure 1.3 shows an architectural design for the RCS using a block
diagram. It depicts three subsystems: mobile unit, base station, and account manage-

Chapter 1 Introduction 7

Mobile Unit Base Station
Air Call
Mobile | _lln_k _|,| Base Station Controller data | Account
Events Hardware Antenna : Software Management
Instructions

A

v I v

Mobile High-Power | | Controller
Software Transceivers | "I Hardware

Events

Instructions

FIGURE 1.3 System design using a block diagram

subsystem. A base station consists of base station antenna, high-power transceiver,
controller hardware, and controller software subsystems. The arrow linesin Figure 1.3
show the relationships between the subsystems.

The allocation activity assigns the system requirements to the subsystems. System
design and allocation should result in subsystems that are relatively independent and
easy to interface. Moreover, the subsystems can be developed by separate engineering
teams such as electrical and electronic engineering teams, mechanical engineering
teams, and software engineering teams. System allocation may decompose the system
requirements into lower-level requirements and assign them to separate subsystems.
For example, requirement RT involves mobile unit and base station as well as hardware X
and software functions. Sending a call request to the base station is the function of a
mobile unit. Intercepting the request is a hardware function. Checking the call request

to ensure that it is a subscriber-to-subscriber call is a software function. Therefore, - ’
the requirement is (ﬁ%into the following: ~
O clione

R1.1. Mobile units shall include automatic number identification (ANI) numbers
when sending a call request.

R1.2. The base station shall verify the caller and callee using the ANI numbers C)/ I Comm D
before setting up a call. |

R1.2.1. The software controller shall verify the caller and callee, and in-
struct the hardware controller to set up a connection when the verification is
successful.

R1.2.2. The hardware controller shall instruct the high-power transceivers
to establish an air-link connection under the software control.

After decomposition, requirement R1.1 is assigned to the mobile unit. Require-
mentR1.2.7 is assigned to the base station software controller, and requirement R1.2.2
is assigned to the base station hardware controller. Similarly, requirement R3 may be
decomposed and assigned to the appropriate subsystems. Requirement R4 is assigned
to the account management subsystem because it is a software-only requirement. |

—

Software Requirements Analysis

Softwar irements analysis refines the system requirements allocated to the
software system. It also identifies other capabilities for the software system. These @l
and the refined system requirements are specified in a software requirements spec-

3 Part| Introduction and System Engineering

account administrator can do to manage the accounts. Thus, the requirement is refined
as follows:

R4.1. The RCS shall allow an authorized account administrator to create a sub-
scriber account.

R4.2. The RCS shall allow an authorized account administrator to activate a
subscriber account.

R4.3. The RCS shall allow an authorized account administrator to deactivate a
subscriber account.

R4.4. The RCS shall allow an authorized account administrator to close a sub-
scriber account.

R4.5. The RCS shall allow an authorized account administrator to delete a sub-
scriber account that is already closed.

The account administrator needs to login to perform these operations and logout
to prevent others to access the accounts. These are examples of software requirements
that are identified during the software requirements analysis phase.

Software Design

Software design determines the software architecture, or the overall structure, of
the software system. It specifies the subsystems, their relationships, the subsystems’
functions, interfaces, and how the subsystems interact with each other. Design of the
user interface is another important activity of software design. That is, it depicts the
look and feel of the windows and dialogs, and describes how the system interacts
with the users. Software design also specifies the information processing algorithms.
As an example for the architectural design for the RCS, Figure 1.4 shows the
N-tier architecture for the account management system. The architecture organizes the
classes or objects into separate layers. Each layer has clearly defined responsibilities
and requests the services of the next layer. For example, the user/device interface layer
provides services to the account administrator and the software controller. It uses the
services of the controller layer. The layered architecture simplifies the implementation
of the business processes. For instance, when the account administrator wants to create
an account, the user interface forwards the request to the create account controller

User/Device Controller
Interface Layer Layer Database Layer Network Layer
Requests Requests
A(;cgum Requests)) Requests -
Administrator »> Business Objects Layer > _,é::}_;.!
“Software | Requests Requests Requests P::;i’o{e
_ Controller e i’ e - system
Responsible for Responsible for Responsible for Responsible for Responsible for
interacting with the executing the executing functions storing/retrieving network
users/devices business processes of individual objects from a communication

business objects database functions

Chapter 1

in the controller layer. The controller creates the Account object, and saves it to the
database through the database layer. This shows that the functions of each layer are
relatively easy to implement and use. Another advantage of the N-tier architecture is
that change to a layer has little impact on other layers, provided that the layer-to-layer
interfaces remain unchanged.

Implementation, Testing, and Maintenance @

During the implementation and unit testing phase, programs are written to implement
compliance to coding standards. During the integration phase, the program modules
are integrated, and tested to ensure that they work with each other. During acceptance
testing, test cases are designed and run to check that the software indeed satisfies the
software requirements. The software system is then installed in the target environment
and tested by users. The software enters the maintenance phase. During the main-
tenance phase, corrections, improvements, and enhancements are made continually
until the system is replaced.

1.3.2 Software Quality Assurance

SQA ensures that the software system under development will satisfy the software
requirements and desired quality standards. Verification, validation, and testing are
the means to accomplish these As shown in Figure 1.5, these activities are

life-cycle activities. In particular, verification ensures that the development activi-
ties are carried out according to the software processes and methods selected for the
software project. It also ensures that the required software artifacts are produced and

Software requirements

Introduction 9

ification (SRS
‘ We must ensure that the Software Requlrements specification (SRS)
devclopment actlvmes Ama]ysxs |
are ca:rned out correctly
A %
Software Design I
CJ
v BeOo T
Codmg &Unit | Software desi gn
Tcstmg e
7
e
Code II i
) 4 modules
Ihtegrauon & AN
Integrauon Testmg‘ h
v
Acceptance Integrated software
Testing
. .
Maintenance Software to deploy

5 -
We must check and make
sure that the SRS, design,
and code are correct.

Static validation

‘We must ensure that the
software executes and
produces expected results

Dynamic validation
or testing

10

Part| Introduction and System Engineering

A

conform to the quality standards. For example, if the RCS project uses the water-
fall process, then verification ensures that the phases of the waterfall are carried out
correctly. It also checks that the RCS system requirements specification, system de-
sign, allocation, software requirements specification, software design, and the other
artifacts are produced and meet the required quality standards. Validation checks the
correctness of the software artifacts produced by the development activities. For ex-
ample, validation for the RCS checks the system and software requirements to ensure
that they specify the real business needs. It also checks that the system as well as
the software design satisfies the requirements and constraints, and the implemented
software system solves the intended business problems.

Validation activities are classified into static validation and dynamic validation
activities. Static validation checks the correctness of the software artifacts without
executing the software. It is applicable to artifacts that are not executable, such as
requirements specification and software design documents. This is similar to exam-
ining the specifications of a car to determine whether it satisfies the needs of the car

buyer. Dynamic validati S oftware to ensure that it works and produces

the correct result. Software testing is a dynamic validation technique. It executes the

software using test cases and checks that the test result matches the expected result.
It is similar to test-driving a car to ensure that it indeed meets the functional and
performance requirements.

Unit testing for the account management system generates test cases to check that
each of the classes in the interface, controller, business objects, database, and network
layers correctly implements the functionality of the class. Integration testing generates
test cases to test and ensure that these classes work with each other. Acceptance testing
derives test cases from the requirements of the account management system to ensure
that the system satisfies the requirements.

1.3.3 Software Project Management

Software project management activities ensure that the software system under devel-
opment will be delivered on schedule and within the budget constraint. To accomplish
these goals, project management performs the following activities, among others:

° Effort estimation. Effort estimation derives the human resources and durations
required to perform the development and SQA activities. For example, how
many developers are needed to perform the analysis, design, implementation,
and testing activities, respectively? What is the duration of each of these activ-
ities? Answers to these questions are used to plan the project and schedule the
activities. Effort estimation derives these estimates from various factors such as
the estimated software size and complexity as well as the required delivery date.

® Project planning and scheduling. Project planning and scheduling are aimed at
producing an overall plan for the project. The project plan will guide the project
teams throughout the life-cycle process. However, due to changes in the real
world, the plan needs to be updated to reflect changes. The project plan specifies
the project goals, the process to reach the goals, the project milestones, the
schedule of project activities and deliverables, the project teams and how the

Chapter 1 Introduction

plan also includes a quality assurance plan. The quality assurance plan specifies
the quality standards, the SQA activities, and a schedule of such activities. Also
included in the project plan is a risk management plan, described below.

® Risk management. Many events could jeopardize a project. For example, a man-
agement person or a key technical staff leaves the project, or the project is far
behind schedule. These are called risk items. Risk management attempts to re-
duce the impact of such events through risk management planning. The risk
management plan identifies the risk items, prioritizes them according to their
likelihood and damage to the project, and specifies risk resolution measures to
counter the risks when any of them occur.

® Project administration. Project administration is an ongoing function of project
management. It performs the management activities as specified in the project
plan. It is concerned with the continuous monitoring of project progress and
executing the actions necessary to adapt the project to the new situation. It also
includes daily management of project activities such as coordinating the project
teams or team members, scheduling and conducting meetings, and solving day-
to-day problems.

° Sroﬂmare configuration management. During the development process, numer-
ous software artifacts are produced. These include requirements specification,
software design, code, test cases, user’s manual, and the like. These compose the
software, or part of it, under different stages of the development process. For ex-
ample, the requirements specification is the software in its nonexecutable form.
The design specification is a refinement of the requirements specification. The
code is a refinement of the design. These documents depend on each other. For
example, software design depends on the requirements. If the requirements are
changed, the design has to change. This in turn may require change to the code that
implements the design. Therefore, software engineering needs a mechanism to
coordinate so that changes are made consistently. This is software configuration
management (SCM).

1.4 OBJECT-ORIENTED SOFTWARE ENGINEERING

Object-oriented software engineeri a specialization of software engi-
neering. OOSE views the world and ¥ s consisting of objects that relate to
and interact with each other. OOSE provides the following to support OO software
development:

SO

1. Q0 modeling and design languages for the team members to communicate their
analysis and design ideas. A modeling and design language defines the notions
and notations as well as rules for using the notations. The Unified Modeling
Language (UML) [36] is the most widely used OO modeling and design language.

2. QWM to guide the development effort. The unified
process (UP) is a well-known development process while agile processes have

1

12 Part| Introduction and System Engineering

3. 00 software development methodologies that detail the steps or how to carry out
the activities of a software process.

4. OO0 development tools and environments to support the development processes
and methodologies. There are commercial products as well as public domain
software. For example, the NetBeans integrated development environment (IDE)
is a free, open source software. It comes with a bundle of plugins that support
activities of the entire software development life cycle.

1.4.1 Object-Oriented Modeling and Design Languages

The rapid spread of C++ in the 1980s motivated the need for a development method-
ology to guide OO software development efforts. Three influential OO development
methodologies, among many others were proposed and widely used in the software
industry. These are Booch Diagram _Ohject Modeling Technique (OMT). and Use
Case Engineering. The industry soon discovered that it was a monumental challenge
to integrate systems designed and implemented using different methodologies. The
reason is that different methodologies use different modeling concepts and notations.
To solve this problem, the Object Management Group (OMG) adopted the Unified
Modeling Language (UML) [36] as an OMG standard. UML is a family of diagrams
for modeling and designing different aspects of an OO system. OML diagrams are
used in the requirements analysis phase to help the development team understand the
business of the existing application. They are used in the design phase as part of the
design specification. UML diagrams will be presented throughout the rest of this book.

1.4.2 Object-Oriented Development Processes

The sequential nature of the waterfall process implies that changes to the requirements

are difficult and costly. This is because any change to the requirements affects the de-

sign and implementation; these must be changed as well. Unfortunately, requirements

change is a common occurence for many real-world projects due to change in market

é—o?xditions, advances in technology, and other factors. The long development duration

of the waterfall process implies that the system is dated as soon as it is released. This

is because the capabilities or requirements of the system were identified long ago. To

overcome these problems, several software process models have been proposed. All
of these adopt an iterative, rather than a strictly sequential, process of development

activities. Examples are the spiral process, the unified process, anqﬁgile processes.

1.4.3 Object-Oriented Development Methodologies

A software process specifies “when to do what,” but not “how to do them.” That is,
it defines the development activities but not how to perform the activities. UML is a
modeling language. It lets the software engineers describe their analysis and design
ideas using the diagrams. It does not help the software engineers to produce the anal-
ysis and design ideas. A software development methodology fills the gap. It specifies
the steps and how to perform the steps to carry out the activities of a software pro-

1T N1 1 . Pl 11 R P I B L A Y S s

Chapter 1 Introduction 13

Modeling Techniques (OMT), Use Case Engineering, and other methods. Agile meth-
ods include Scrum, Dynamic System Development Method (DSDM), Feature Driven
Development (FDD), Crystal Clear, Extreme Programming (XP), Lean Development
Method, and others.

1.4.4 Will 00 Replace the Conventional Approaches?

The answer is no, for a number of reasons. First, maintaining numerous conven-
tional systems is required. Second, numerous organizations still use the conventional
approaches. Third, a conventional methodology may be more appropriate for some
projects such as scientific computing. Finally, a system may consist of components
developed by conventional and OO approaches. Therefore, OO and conventional
approaches willl\coexist for many years.

have Lo
1.5 SOFTWARE ENGINEERING AND COMPUTER SCIENCE

@ngineeﬁng and computer science are difWomputer science disci-
plines such as algorithms and data structures, database systems, artificial intelligence,
operating systems, and others emphasize computational efficiency, resource sharing,
accuracy, optimization, and performance. These attributes can be measured quantita-
tively and immediately. Indeed in the last several decades (1950—present), all efforts
and resources spent in computer science research are aimed at improving these aspects.
Most chapters of a computer science textbook are written about methods, algorithms,
and techniques to improve these aspects.

Unlike computer science, software engineering emphasizes software PQCT. For
example, obtaining an optimal solution is often the goal of computer science. Soft-
ware engineering would use a good-enough solution to reduce development time and
effort. Efforts and resources spent in software engineering R&D are aimed at improv-
ing software PQCT. Most chapters of a software engineering textbook are written
about methods and techniques to improve these four aspects. Unfortunately, the impact @
of a software engineering process or methodology cannot be measured immediately.
To be meaningful, the impact must be assessed during a long period. For example,
researchers take more than one decade to realize that the uncontrolled goto statement
is harmful. That is, the uncontrolled use of the goto statement results in poorly struc-
tured programs, which are difficult to understand and test.

,(_jglm)_ut'er science focuses only on technical aspects. Software engineering has to
consider nontechnical issues. For example, the early stages of the development process
focus on identifying business needs and formulating requirements and constraints.
These activities require knowledge, experience, and skill in communication, customer
relations, and business analysis. Software engineering also requires knowledge and
experience in project management. User interface design has to consider human
factors such as user preference and how users would use the system. In addition,
software development must consider political issues because the system may affect
many people in one way or another.

Recognizing the differences between software engineering and computer science

Al A AT v A nrbnan A nn A et o Ch e T PRNRE R S I I .

14 Part | Introduction and System Engineering

and principles. Consider, for example, the design of a software system that needs
to access a database. Computer science disciplines might emphasize efficient data
storage and retrieval and favor a design in which the business objects access the
database directly. Such a design is said to create a tight coupling between the business
objects and the database. Software engineering would not consider this as a good
design unless performance is a serious concern. If the database, or the database
management system (DBMS) is changed, then the business objects have to change.
This may be difficult and costly. If the database is at a remote location, then the
business objects must know how to communicate with the remote database. These
result in complex business objects, which are difficult to test and maintain.

Despite the differences, software engineering and computer science are closely
related. Computer science to software engineering is like physics to electrical and
electronics engineering, or chemistry to chemical engineering. That is, computer sci-
ence is a theoretical and technological foundation of software engineering. Software
engineering is the application of computer science. However, software engineering
has its own research topics. These include research in software processes and method-
ologies, software verification, validation, and testing techniques, among many others.
Software engineering research is aimed at significantly improving software PQCT
and the trade-off between them.

Software engineering is a broad area. A software engineer should know the dif-
ferent areas of computer science including database systems, operating systems, data
structures and algorithms, programming languages, and compiler construction, to
jmention a few. Embedded systems development requires the software engineer to
have a basic understanding of electronic circuits and how to interface with hardware
devices. Finally, it takes time for a software engineer to gain domain knowledge
and design experience to become a good software architect. These challenges and
the ability to design and implement large complex systems to meet practical needs
make software engineering an exciting area. The ever-expanding computer applica-
tion creates great opportunities for the software engineer and software engineering
researcher.

T~

SUMMARY

Software engineering is defined as a discipline that
investigates and applies engineering processes and
methodologies to improve software PQCT. The need
for software engineering is discussed and software
life-cycle activities are described. OO software en-
gineering is a specialization of software engineer-
ing. It views the world and systems as consisting of
objects relating to and interacting with each other.
The chapter ends with a discussion of the differ-
ences and relationships between computer science

and software engineering. That is, computer science is
afoundation of software engineering. While computer
science is mainly concerned with optimization and
efficiency, software engineering is concerned with
software PQCT. Knowing these helps a developer
understand software engineering and the rationale
behind the processes, methodologies, modeling lan-
guages, design patterns, and many others. All these
are designed to improve software PQCT.

FURTHER READING

Chapter 1 Introduction 15

Many books provide comprehensive coverages of the dis-
cipline of software engineering. Some examples are [123,
125, 139]. OOSE books include [40, 133], among many oth-
ers. An excellent introduction to OO analysis and design is
presented in [104]. Numerous books that describe UML and
UP have been published, notably [36, 63, 91]. The Object
Management Group (OMG) website (http://www.omg.org)

CHAPTER REVIEW QUESTIONS

publishes UML specifications and related articles. Many
books on agile development are available. These include
[21, 50, 52, 119, 124, 140]. The agile alliance website
(http://www.agilealliance.org/) is an excellent resource. It
publishes numerous good articles and discussions on the
topic.

1. What is software engineering. Why is it needed?
2. What is a software development process?

3. What is software quality assurance?

4. What is software project management?

5. What is software configuration management?

EXERCISES

—®

6. What are the differences between object-oriented
software engineering and conventional software
engineering?

7. What are the differences and relationships between
software engineering and computer science? Can we
have one without the other?

1.1 Search the literature and find four other definitions of
software engineering in addition to the one given in
this chapter. Discuss the similarities and differences
between these definitions.

1.2 Describe in a brief article the functions of soft-
ware development process, software quality assur-
ance, software project management, and software
configuration management. Discuss how these work
together during the software development life cycle.

Discuss how they improve software PQCT.

1.3 Should optimization be a focus of software engineer-
~ ing? Briefly explain, and justify your answer with a

practical example.

1.4 Identify three computer science courses of your
choice. Show the usefulness of these courses in the

software life-cycle activities.

—9

1.5 There are interdependencies between software pro-
ductivity, quality, cost, and time to market. For ex-
ample, more time and effort spent in coding could
increase productivity. This may result in less time
and effort in software quality assurance because the
total time and effort are constants. Poor quality could
cost productivity due to rework. Identify three pairs
of such interdependencies of your choice. Discuss
their short-term and long-term impacts on the soft-
ware development organization. How should soft-
ware engineering solve the “dilemmas” induced by
the interdependencies?

1.6 What are the differences and relationships between
OO software engineering and conventional software
engineering? Discuss whether object-oriented soft-
ware engineering will replace conventional software

engineering.

