
Kernel Build Guide
By: Isaiah Anyimi, Ona Igbinedion, Moriah Scott

Helpful Links
The links below were used when we were figuring out how to compile the kernel successfully,
and boot it. The instructions have the solutions embedded within them, but if you would like to
peruse through them, they have small references to what we used them for in the instructions.

● https://forums.virtualbox.org/viewtopic.php?f=3&t=93990 (told us to regress VBox)
● https://forums.virtualbox.org/viewtopic.php?t=54926 (change chipset link)
● https://forums.virtualbox.org/viewtopic.php?f=1&t=62339 (hyper v)
● https://www.cyberciti.biz/tips/compiling-linux-kernel-26.html (how to compile kernel)
● https://www.wikihow.com/Become-Root-in-Linux (how to become root user)
● https://askubuntu.com/questions/56841/gpg-cant-check-signature (keyserver link)
● https://forums.virtualbox.org/viewtopic.php?t=82263 (guest additions part 2)
● https://www.configserverfirewall.com/windows-10/virtualbox-guest-additions-windows-10/

(guest additions part 1)
● https://unix.stackexchange.com/questions/293642/attempting-to-compile-kernel-yields-a-

certification-error (comment out in .config)

How we did a clean build of the Kernel
We followed the tutorial on https://www.cyberciti.biz/tips/compiling-linux-kernel-26.html to
compile the kernel. We ran into several issues while doing so, but were able to debug them via
existing VirtualBox forums.

1. Install Oracle VM VirtualBox to version 6.0.6
a. You can use the latest version of VirtualBox if you want, but if you are on a

Windows computer be forewarned. Newer versions of VirtualBox were causing
the error Kernel panic - not syncing: Fatal exception whenever
we tried to run our build.

2. Set up your VM
a. We had many issues setting up our VM. When building the kernel, we ran out of

space when we set aside 40 gB for our virtual hard disk. We then set aside 100
gB and were able to compile successfully.

b. Here are several pictures of our VM settings.

https://forums.virtualbox.org/viewtopic.php?f=3&t=93990
https://forums.virtualbox.org/viewtopic.php?t=54926
https://forums.virtualbox.org/viewtopic.php?f=1&t=62339
https://www.cyberciti.biz/tips/compiling-linux-kernel-26.html
https://www.wikihow.com/Become-Root-in-Linux
https://askubuntu.com/questions/56841/gpg-cant-check-signature
https://forums.virtualbox.org/viewtopic.php?t=82263
https://www.configserverfirewall.com/windows-10/virtualbox-guest-additions-windows-10/
https://unix.stackexchange.com/questions/293642/attempting-to-compile-kernel-yields-a-certification-error
https://unix.stackexchange.com/questions/293642/attempting-to-compile-kernel-yields-a-certification-error
https://www.cyberciti.biz/tips/compiling-linux-kernel-26.html






c. We also used 12 cores for our VM, so the build would go by quickly (It took like
an hour and a half-ish)

d. In settings → systems → Motherboard: change the chipset setting from PIIX3 to
ICH9

e. In settings → systems → Acceleration: change Paravirtualization Interface to
Hyper-V

f. In setting → systems → Acceleration: make sure enable VT-x/AMD-V is enabled.
You may have to go into the uefi firmware of your windows machine and
toggle this setting as well. It may be labeled as “Virtualization” or “SVM”. We
found it in the overclocking settings.

g. In settings → display: click to Enable 3D Acceleration
h. In your VM, with the Ubuntu version of your choosing (our initial version was

20.0.4) go to terminal and make yourself the root user.
i. If you don’t know the root password (highly unlikely), enter the command sudo

passwd root to set the root password to a password of your choosing. Then
enter the command su - to become the root user. Enter the root password (you
just created it!) and then you will become the root user



3. Navigate to the /usr/src directory ( cd /usr/src ) and download the linux kernel source
code using the following command

a. wget

https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.11.10.t
ar.xz

b. You can replace the 5.11.10 with whatever kernel version you want.
4. Extract the tar.xz file

a. Type in either of the following commands (We used the first one)
b. $ unxz -v linux-5.11.10.tar.xz or $ xz -d -v

linux-5.11.10.tar.xz

5. Verify Linux kernel tartball with pgp
a. First grab the PGP signature for linux-5.11.10.tar using the following command:

i. $ wget

https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.1
1.10.tar.sign

b. Try to verify it with the command $ gpg --verify

linux-5.11.10.tar.sign

i. You should get a sample output like the following

c. Grab the public key from the PGP keyserver in order to verify the signature i.e.
RSA key ID 79BE3E4300411886 (from the above outputs) using the following
commands

i. gpg --keyserver keyserver.ubuntu.com --recv-keys

79BE3E4300411886 and gpg --no-default-keyring -a

--export 79BE3E4300411886 | gpg --no-default-keyring
--keyring ~/.gnupg/trustedkeys.gpg --import

ii. We used both of these commands, because when we used the command
in the original tutorial, it didn’t let us grab the public key and gave us an
error. This resolved it!

d. Now verify gpg key again with the gpg command: $ gpg --verify

linux-5.11.10.tar.sign

i. You should get a sample output like the following

https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.6.9.tar.sign
https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.6.9.tar.sign


ii. If this doesn’t work(You get a “BAD signature” output), RIP, then search
the forums with your error and you should find a solution eventually. If not,
post your issue to the forums and some people may help you eventually.
If it does work, move on to the next step.

e. untar/extract the Linux kernel tarball using the tar command below
i. $ tar xvf linux-5.11.10.tar

6. Configure the Linux kernel features and modules:
a. Move into the newly created linux-5.11.10 directory

i. $ cd linux-5.11.10

b. We copied an existing .config file using the cp command, because that is easiest!
i. $ cp -v /boot/config-$(uname -r) .config

ii. Sample output below:

7. Install the required compilers and other tools
a. Type in the following command to install them:

i. $ sudo apt-get install build-essential libncurses-dev

bison flex libssl-dev libelf-dev

8. Configuring the kernel
a. Open the .config file and edit the following:

i. Comment out CONFIG_SYSTEM_TRUSTED_KEYS and
CONFIG_MODULE_SIG_KEY and save the file.

b. Type in one of the following options to start kernel configuration
i. $ make menuconfig (We used this way)

1. Navigate to Load and load whatever additions you want to add
(optional)

2. Navigate to Save and save .config file (not optional!)
ii. $ make xconfig

iii. $ make gconfig

9. Compile the kernel



a. If you added additional cores run the following command, replacing the 12 with
how many cores you added

i. $ make -j 12

b. If you did not add additional cores run the following command
i. $ make

10. Install the Linux Kernel and Kernel Modules
a. Install Linux Kernel Modules using $ sudo make modules_install

b. Install Linux Kernel using $ sudo make install

11. Reboot your vm by issuing the # reboot command and hope it loads properly.


