
Object-Oriented Software Engineering: An Agile Unified Methodology by David Kung

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

Chapter 21: Software

Maintenance

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-2

Key Takeaway Points

• Software maintenance is modifying a software

system or component after delivery to correct

faults, improve performance, add new

capabilities, or adapt to a changed

environment. (IEEE Standard 610.12-1991)

• Software maintenance consumes 60%–80% of

the total life-cycle costs; 75% or more of the

costs are due to enhancements.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-3

What Is Software Maintenance?

• Software maintenance is modifying a software

system or component after delivery to correct

faults, improve performance, add new

capabilities, or adapt to a changed

environment. (IEEE Standard 610.12-1991)

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-4

Factors Demanding Changes

• Bug fixes.

• Change in system’s operating environment.

• Change in government policies and

regulations.

• Change in business procedures.

• Change to prevent future problems.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-5

Lehman’s Laws of System Evolution

1. Law of continuing change (1974).

2. Law of increasing entropy or complexity
(1974).

3. Law of self-regulation (1974).

4. Law of conservation of organizational
stability (1978).

5. Law of conservation of familiarity (1978)

6. Law of continuing growth (1991).

7. Law of declining quality (1996).

8. Law of feedback systems (1996).

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-6

Types of Software Maintenance

• Corrective maintenance: planned, reactive
modification of the software product to correct
errors.

• Adaptive maintenance: modification of the
software product to enable it to operate in a
changed operating environment.

• Perfective maintenance: modification of the
software product to improve its quality or
performance.

• Emergency maintenance: unplanned corrective
maintenance to keep the system operational.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-7

Software Maintenance Activities

• Program understanding.

• Change identification and analysis.

• Configuration change control.

• Change implementation, verification, and

incorporation.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-8

Program Understanding

• It is process that extract design and

specification information from the code.

• It presents the extracted design and

specification information in some mental

models:

– UML diagrams

– control flow diagrams

– data flow diagrams

• It is also called program comprehension.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-9

Change Identification and Analysis

• Change to a class or component may impact a

few, or many other classes or components.

• These other classes or components may need

to change.

• Alternative changes may be identified and

analyzed to assess their costs of

implementation.

• One of the alternatives is selected.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-10

Configuration Change Control

• Change to a class or component may affect
many other classes or components.

• Classes and components of a system are
designed and implemented by different teams
and team members.

• Changes must be coordinated, else inconsistent
system configuration may occur.

• Configuration change control is a mechanism
to coordinate change in a teamwork
environment.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-11

Software Maintenance Process Models

• Quick fix model

• Iterative enhancement model

• Full reuse model

• IEEE-1219 model

• ISO-12207 model

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-12

Quick Fix Model

(a) Quick fix model

Old System

Requirements

|

Design

|

Code

|

Test

New System

Requirements

|

Design

|

Code

|

Test

Changes are made to the

code, design and

requirements are updated

accordingly. The modified

code is tested.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-13

Iterative Enhancement Model

Old System

Requirements

|

Design

|

Code

|

Test

|

Analysis

New System

Requirements

|

Design

|

Code

|

Test

|

Analysis

Analyzing the old system after delivery to

identify update to requirements. Repeat

the development life cycle to produce the

updated system.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-14

Full Reuse Model

Old System

Requirements

|

Design

|

Code

|

Test

New System

Requirements

|

Design

|

Code

|

Test

Repository

(Ri)

(Di)

(Ci)

(Ti)

It emphasizes reusing components of the

current system, or components from a reusable

component repository. Components developed

for the new system are made reusable and

added to the repository.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-15

IEEE-1219 Model

Analysis

Design

Implementation

Regression/

System Testing

Acceptance

Testing

Delivery

Problem

Identification/

Classification

change

request

It is similar to the iterative

enhancement model.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-16

ISO-12207 Model

Process Implementation

Problem and modification analysis

Modification implementation

Maintenance review/acceptance

Migration

Software retirement

Maintenance

Process

It is similar to the iterative

enhancement model.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-17

Reverse-Engineering

• A process of analyzing a subject system to

identify system components and their

interrelationships, and create representations of

the system in another form or at a higher level

of abstraction.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-18

Reverse-Engineering Workflow

Source Code,

or Executable

Extract

Software

Artifacts

Artifact

Database

Produce

Diagram

Layouts

Diagram

Layouts

Display

Design

Diagrams

As-Implemented

Design Diagrams

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

21-19

Usefulness of Reverse-Engineering

• Program understanding.

• Formal analysis.

• Test generation.

• Software re-engineering.

Object-Oriented Software Engineering: An Agile Unified Methodology by David Kung

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

Chapter 22: Software

Configuration Management

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-21

Key Takeaway Points

• A baseline defines a significant state of

progress of the system under development. It

consists of a set of configuration items.

• Software configuration management (SCM) is

baseline management, and configuration item

management.

• SCM functions include configuration item

identification, configuration change control,

configuration auditing, and configuration

accounting.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-22

Software Configuration Management

• Software configuration management (SCM) is

a discipline for

– systematically identifying and labeling software

configuration items (requirements, design, code

module, test plan, etc.)

– controlling changes to software configuration

items

– tracking implementation of the changes

– reporting configuration status

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-23

Software Configuration Management

• Software configuration management is

– baseline management

– software configuration item management

– motivated by characteristics of software

• Requirements baseline, design baseline,

implementation baseline, etc.

• Each baseline is a set of configuration items

plus a set of changes

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-24

What Is a Baseline?

• A baseline is a set of documents, called

software configuration items (SCM).

• It includes updates to a baseline.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-25

Baselines of a Waterfall Process

Analysis Design Coding Testing Maintenance

Feasibility

Review Software

Requirements

Review
Preliminary

Design

Review
Critical

Design

Review

Code

Review

Acceptance

Test

Product

Release

Review

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-26

Baselines of Agile Unified Methodology

Planning Requirements Design Validation

Increments 1, 2, 3, ...

Planning baseline

 SRS

 Use cases, use case

 diagrams, traceability

 matrix

 use case delivery schedule

 draft architectural design

Requirements baseline

 update to planning baseline

 domain model or refinement

 validation test plan

 preliminary user’s manual

Design baseline

 software design

 document

 integration test plan

Implementation baseline

 unit test cases

 source code lists

 unit test reports

Integration baseline

 integration test cases

 test report

Validation baseline

 validation test cases

 validation test reports

 installation manual

 user’s manual

 user’s guide

time

Implementation Integration

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-27

SCM Functions

• SC identification

• SC control

• SC status accounting

• SC auditing

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-28

SC Identification

• Define the SC items

• Define a SCI naming scheme

• Define the relationships between the SCIs

• Determine the quality assurance (QA)

personnel

• Determine who is responsible for delivering

which SCI to SCM

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-29

Example SC Items

• System specification

• Project plan

• Software requirements spec

• Prototype (executable, or paper)

• Preliminary user's manual

• Design spec (preliminary, and detailed design

specs)

• Source code listings

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-30

Example SC Items

• Test plan, procedure, cases, and results

• Installation manual

• Operation manual

• Executables

• As-built user's manual

• Maintenance documentation (problems,

reports, requests, and ECP)

• Standards, and procedures

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-31

Requirements on Naming Scheme

• It can be used to uniquely identify the SCI.

• It should bear certain semantics.

• It should be such that related documents have

related names.

Examples:

• RADC/UI/TOOLS/DE/ADI/F S

• RADC/UI/TOOLS/DE/ADI/CODE

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-32

Queries to SCM

• Question: What is a software system's configuration

at a given baseline?

• Answer: It consists of SCI1, SCI2, SCI3, ..., SCIn.

• Class Exercise:

– Identify SCIs for your team project.

– Define a naming scheme.

– Define the relationships between the SCIs.

– Determine the quality assurance (QA) personnel.

– Determine who is responsible for delivering which

SCI to SCM.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-33

SC Data Base

Queries to be answered:

• Which customer has a particular version of a

system?

• Which particular version is currently used by

which department?

• How many versions of a system have been

created?

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-34

SC Data Base

• What were the creation dates?

• What versions might be affected if a particular

component is changed?

• How many reported errors exist in a particular

version?

• Which of the errors have been removed?

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-35

SC Change Control:

• Identifying needs for changes

• Preparing engineering change proposal (ECP)

• Approve or disapprove ECPs

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-36

Events Requiring Change

• Software deficiencies (inadequacy,

incorrectness)

• Hardware changes (maybe due to H/W

deficiency)

• New operational requirements Economic

savings

• Schedule accommodation (compression, or

extension)

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-37

Basic Components in SC Control :

• Documentation that formally define the

proposed changes to a software system (ECP)

– Administrative forms

– Supporting technical materials

– Supporting administrative materials

• Configuration Control Board (CCB)

• A procedure for controlling the changes to a

software system

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-38

Engineering Change Proposal

• Description of proposed changes

• Identification of originating organization

• Rationale for the changes

• Identification of the affected baselines and

SCIs

• Costs

• Schedule impacts

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-39

Identify

needs for

change

ECP

Preparation

Change

Evaluation

Approve?

CCB

possible

feedback

Change Analysis
Cost, duration, tech definition of change,

impact, etc.

results

ECP Archive

Change

incorporation Y

N

Events that

require change

SCC

Software Configuration Control Procedure

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-40

SC Auditing

• Determine the current status of the system with

respect to current baseline and requirements

• Provide mechanisms for formally establishing

a baseline

• Perform configuration verification and

validation

• Ensure that changes are properly and timely

implemented

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-41

Mechanisms to Accomplish SC Auditing

• Software quality assurance (formal technical

reviews)

– Defect list sheet

– Review cover sheet

• Software configuration auditing

– Version numbering

– Software release

• VDD

• Directory listing comparison

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-42

SC Verification and Validation

• Configuration validation

– ensure that the SCI solves the right problem

– ensure that customer’s requirements are satisfied

– You built the “right thing”

• Configuration verification

– ensure that each software configuration item is

produced according to baseline definition.

– You built the “thing right”

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-43

SC Auditing and Baselines

• System definition baseline focus on

establishing clear trace between system

requirements and the system concept

• Allocation baseline ensures that

– software functions are defined

– software functions are traceable to system

functions

– software functions are identified as, or assigned to

SCIs

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-44

SC Auditing and Baselines

• Design baseline ensures that the design is

unambiguous.

• Production baseline ensures that the executable

SCIs perform adequately in the development

environment.

• Operation baseline ensures that the product

perform adequately in the target environment.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-45

SC Auditing Process

Is baseline or update

list acceptable?

Invoke SC control

process

Engineering

change

incorporation

baseline/updates

established

baseline/update

baseline or
update list

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-46

SC Status Accounting

• Administrative tracking and reporting of SCIs

formally identified and controlled

• DB support for the other three SCM tasks

• Problems to be addressed:

– large amount of data

– multiple representation of software

– incomplete information

– long transactions

– inconsistency

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

22-47

Summary

SC

Identification

SC

Auditing

SC

Control

SC Status

Accounting

