
Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

Extracts from CH10 through CH14

• Applying Design Patterns to your design

• Deriving a class diagram

• User Interface design considerations

• State modeling in event-driven systems

• Activity modeling in transitional systems

Object-Oriented Software Engineering: An Agile Unified Methodology by David Kung

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

Chapter 10: Applying Responsibility

Assignment Patterns

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-3

Key Takeaway Points

• Design patterns are abstractions of proven

design solutions to commonly encountered

design problems.

• The controller, expert, and creator patterns are

applicable to almost all objectoriented systems.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-4

What Are Design Patterns?

• Design patterns are proven design solutions to
commonly encountered design problems.

• Each pattern solves a class of design problems.

• Design patterns codify software design principles and
idiomatic solutions.

• Design patterns improve communication among
software developers.

• Design patterns empower less experienced developers
to produce high-quality designs.

• Patterns can be combined to solve a large complex
design problem.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-5

Example: The Singleton Pattern

• Pattern name: Singleton

• Design Problem: How do we ensure that a

class has only one globally accessible instance?

• Example uses:

– System configuration class

– System log file

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-6

The Singleton Pattern

public class Catalog {

 private static Catalog instance;

 private Catalog() { ... } // private constructor

 public static Catalog getInstance() {

 if (instance==null) instance=new Catalog();

 return instance;

 }

 // other code

}

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-7

Example: The Singleton Pattern

<<Singleton>>

Config

-$ instance: Config

// other attributes

- Config()

+$ getInstance(): Config

// other operations

if (instance==null)

 instance=new Config();

return instance;

+: public -: private $: static

Stereotype shows

the pattern name

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-8

Describing Patterns

• The pattern name conveys the design problem
as well as the design solution.

• Example: Singleton

– How to design a class that has only one globally
accessible instance?

– The singleton pattern provides a solution.

• Pattern description also specifies

– benefits of applying the pattern

– liabilities associate with the pattern, and

– possible trade-offs

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-9

More About Design Patterns

• Patterns are recurring designs.

• Patterns are not new designs.

• Most patterns aim at improving the

maintainability of the software system.

– easy to understand

– easy to change (significantly reduce change impact)

• Some patterns also improve efficiency or

performance.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-10

Commonly Used Design Patterns

• The General Responsibility Assignment

Software Patterns (GRASP)

• The Gang of Four Patterns due to the four

authors of the book.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-11

GRASP Patterns

• Expert

• Creator

• Controller

• Low coupling

• High cohesion

• Polymorphism

• Pure fabrication

• Indirection

• Do not talk to strangers

http://en.wikipedia.org/wiki/GRASP_%28object-oriented_design%29

(Provides comparison with GoF pattern set)

http://en.wikipedia.org/wiki/GRASP_%28object-oriented_design%29
http://en.wikipedia.org/wiki/GRASP_%28object-oriented_design%29
http://en.wikipedia.org/wiki/GRASP_%28object-oriented_design%29

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-12

Gang of Four Patterns

• Creational patterns deal with creation of

complex, or special purpose objects.

• Structural patterns provide solutions

for composing or constructing large, complex

structures that exhibit desired properties.

• Behavioral patterns are concerned with

– algorithmatic aspect of a design

– assignment of responsibilities to objects

– communication between objects

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-13

The GoF Patterns

Creational Patterns

• Abstract factory

• Builder

• Factory method

• Prototype

• Singleton

Structural Patterns

• Adapter

• Bridge

• Composite

• Decorator

• Facade

• Flyweight

• Proxy

Behavioral Patterns

• Chain of responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template method

• Visitor

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-14

Applying GRASP through a Case Study

• Examine a commonly seen design.

• Discuss its pros and cons.

• Apply a GRASP pattern to improve.

• Discuss how the pattern improves the design.

• During this process, software design principles

are explained.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-15

A Checkout Sequence Diagram

create(p:Patron, d:Document)

 : CheckoutGui : DBMgr

Patron

<<call number >>

d := getDocument (callNo: String):

Document

<<msg>>

l: Loan

save(l:Loan)

d:Document

setAvailable(false:boolean)

save(d:Document)

[d!=null] alt

[else] msg := “Document not available.”

msg := “Checkout successful.”

msg := checkOut

 (callNo:String): String

a:=isAvailable():boolean

alt

[a]

[else] msg := “Document not found.”

presentation

business
objects

Tight coupling between presentation

and business objects

GUI is assigned

too many

responsibilities.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-16

Problems with This Design

• Tight coupling between the presentation and the
business objects.

• The presentation has been assigned too many
responsibilities.

• The presentation has to handle actor requests (also
called system events).

• Implications

– Not designing “stupid objects.”

– Changes to one may require changes to the other.

– Supporting multiple presentations is difficult and
costly.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-17

A Better Solution

• Reduce or eliminate the coupling between
presentation and business objects.

– the Low Coupling design principle

• Remove irrelevant responsibilities from the
presentation.

– the separation of concerns principle

– it achieves high cohesion and

– designing “stupid objects”

• Have another object (class) to handle actor
requests (system events).

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-18

Who Should Handle an Actor Request?

msg:=checkout(uid, cnList):

 String

:CheckoutGUI

<<uid, cnList>>

?

<<msg>>

msg:=checkout(uid, cnList):

 String

:CheckoutGUI

<<uid, cnList>>

:CheckoutController

<<msg>>

Assign the responsibility for handling an actor request to a controller.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-19

The Controller Pattern

• Actor requests should be handled in the

business object layer.

• Assign the responsibility for handling an actor

request to a controller.

• The controller may delegate the request to

business objects.

• The controller may collaborate with business

objects to jointly handle the actor request.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-20

Benefits of The Controller Pattern

• Separation of concerns

• High cohesion

• Low coupling

• Supporting multiple interfaces

• Easy to change and enhance

• Improving software reusability

• It can keep track of use case state, and ensure

that the correct sequence of events is being

handled.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-21

Liabilities of The Controller Pattern

• More classes to design, implement, test and

integrate.

• Need to coordinate the developers who design

and implement the UI, controllers and business

objects.

– This is not a problem when the methodology is

followed.

• If not designed properly, it may result in

bloated controllers.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-22

Bloated Controller

• A bloated controller is one that is assigned too many

unrelated responsibilities.

• Symptoms

– There is only one controller to handle many actor requests.

• This is often seen with a role controller or a facade

controller.

– The controller does everything to handle the actor requests

rather than delegating the responsibilities to other business

objects.

– The controller has many attributes to store system or

domain information.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-23

Cures to Bloated Controllers

• Symptoms

– only one controller to

process many system

events

– the controller does all

things rather than

delegating them to

business objects

– the controller has many

attributes to maintain

system or domain

information

• Cures

– replace the controller

with use case controllers

to handle use case

related events

– change the controller to

delegate responsibilities

to appropriate business

objects

– apply separation of

concerns: move the

attributes to business

objects or other objects

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-24

msg:=checkout(uid,cnList): String

:Checkout
GUI

<<uid, cnList>>

:Checkout

Controller

Class Exercise

• Complete the sequence diagram for the

“Checkout Document” use case.

<<msg>>

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-25

<<uid,

cnList>>
msg:=checkout

(uid, cnList): String

<<process info>>

:Checkout
GUI :DBMgr

<<get ?>>

<<msg>>

What Should the Checkout Controller Do?

<<access db>>

<<update>> <<update db>>

What should the controller get from the DBMgr?

How should the controller process the result?

How should the controller update the database?

:Checkout

Controller

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-26

<<uid,

callNo>>

Conventional Design

b1:=hasPatron (uid): boolean msg:=checkout (uid,

 callNo): String

:DBMgr

b2:=isAvailable (callNo):
 boolean

[b2] setAvailable (callNo,false)

[b2] setCheckout(uid, callNo)

:Checkout
GUI

:Checkout

Controller

[b1]: msg:=process

 (callNo): String

<<msg>>

UML 1.0 conditional

check

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-27

Problems with the Conventional Design

• The database manager has to know a lot of

database detail.

• The database manager is not “stupid.”

• Responsibilities are not correctly assigned.

• It is designed with a procedural programming

mindset!

• It is not an object-oriented design!

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-28

The following slides are

for you to review on your own:

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-29

Applying The Expert Pattern

• Expert Pattern: Assign the request to the

information expert.

– It is the object that stores the information needed

to fulfill the request.

?

request() Who should handle

the request?

responsibility

Assign the responsibility to the object that has the information to

fulfill the request – the object that has an attribute that stores the

information.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-30

Applying The Expert Pattern

b1:=hasPatron (uid):bool msg:=checkout(uid,callNo):

 String

<<uid,

callNo>>

:DBMgr

b2:=isAvailable (callNo):
 boolean

[b2] setAvailable (callNo,false)

[b2] setCheckout (uid, callNo)

:Checkout
GUI

:Checkout

Controller

[b1]: process (callNo)

<<msg>>

Who has the

information to

fulfill this?

Does the DB

manager have

the attribute to

fulfill these?

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-31

Applying The Expert Pattern

<<uid,

cnList>>

:DBMgr

u:=getUser(uid): user

d:=getDocument(cn):
 Document

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout

Controller

msg:=check-

out(uid,

cnList) [u!=null & cn in

cnList]*: msg:=
 process(cn): String

a:=isAvailable()

<<msg>>

:Checkout
GUI

UML 1.0 notation

for loop

expert pattern –

Document has the

attribute

Controller has the

parameters needed to

call the constructor of

Loan.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-32

The Expert Pattern

• It is a basic guiding principle of OO design.

• ~70% of responsibility assignments apply the

expert pattern.

• It is frequently applied during object

interaction design – constructing the sequence

diagrams.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-33

Benefits of The Expert Pattern

• Low coupling

• High cohesion

• Easy to comprehend and change

• Tend to result in “stupid objects”

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-34

A Reset Password Sequence Diagram

<<JSP>>
ResetPW

<<uid>>

:DBMgr

q:=getQuest

(uid): String

b:=checkAns
(answer):
boolean

:ResetPW

Controller

q:=get

Question(uid):

String

<<question q>>

<<answer>> b:=check Ans

(answer):

boolean

<<JSP>>
Authen

[b]<<success>>

[not b]<<fail>>

What is “wrong” with this design?

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-35

Problems with the Design

• It assigns getQuest() and checkAns() to the

wrong object – DBMgr, which does not have

the attributes to fulfill the requests.

• It does not design “stupid objects.”

• It violates the expert pattern.

• It is designed with a conventional mindset.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-36

u:=getUser (uid):
 User

q:=getQuestion
 (uid): String

<<uid>>

<<question>>

:ResetPW

Controller

msg:=checkAns

(answer): String

Applying The Expert Pattern

<<JSP>>
ResetPW :DBMgr

msg:=checkAns (answer):
 String

<<answer>>

<<JSP>>
Authen

<<msg>>

u:User

q:=getQuest(): String

User has the

information to fulfil

these two requests.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-37

The Creator Pattern

• Who should create a given object?

loan:Loan :???
create(...)

c:Chapter :???
create(...)

:DBMgr :???
create(...)

:Checkout

Controller
:???

create(...)

Who should create a

chapter of a book?

Who should create a

Loan object in a

library system?

Who should create a

DB manager?

Who should create a

checkout controller?

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-38

The Creator Pattern

• Object creation is a common activity in OO design –
it is useful to have a general principle for assigning
the responsibility.

• Assign class B the responsibility to create an object of
class A if

– B is an aggregate of A objects.

– B contains A objects, for example, the dispenser contains
vending items.

– B records A objects, for example, the dispenser maintains a
count for each vending item.

– B closely uses A objects.

– B has the information to create an A object.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-39

?

The Creator Pattern

• Who should create these objects?

loan:Loan
:Checkout

Controller

create(...)

c:Chapter
create(...) Because a chapter is a part

of a book.

Because Checkout

Controller has the

information to call the

constructor of Loan.

? :Book

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

10-40

Benefits of The Creator Pattern

• Low coupling because the coupling already

exists.

• Increase reusability.

• Related patterns

– Low coupling

– Creational patterns (abstract factory, factory

method, builder, prototype, singleton)

– Composite

Object-Oriented Software Engineering: An Agile Unified Methodology by David Kung

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

Chapter 11: Deriving a Design

Class Diagram

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-42

Key Takeaway Points

• A design class diagram (DCD) is a UML class

diagram, derived from the behavioral models

and the domain model.

• It serves as a design blueprint for test-driven

development, integration testing, and

maintenance.

• Package diagrams are useful for organizing

and managing the classes of a large DCD.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-43

Deriving Design Class Diagram

• A design class diagram (DCD) is a structural

diagram.

• It shows the classes, their attributes and operations,

and relationships between the classes. It may also

show the design patterns used.

• It is used as a basis for implementation, testing, and

maintenance.

• It should contain only classes appear in the sequence

diagrams, and a few classes from the domain model.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-44

Deriving Design Class Diagram

• It is derived from the domain model (DM) and the

sequence diagrams:

– The domain model provides a few classes, the attributes

and some relationships.

– The sequence diagrams determines the classes, methods,

some attributes, and dependence relationships.

• DCD may contain design classes like controller,

command, GUI classes. Domain model only contains

application classes.

• DCD must be carefully specified. DM is more liberal.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-45

Steps for Deriving DCD

1) Identify all classes used in each of the sequence

diagrams and put them down in the DCD:

– classes of objects that send or receive messages

– classes of objects that are passed as parameters or return

types/values

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-46

Identify Classes Used in Sequence Diagrams

<<singleton>>

classes used.

:Checkout
GUI

<<uid,

cnList>>

:DBMgr

u:=get

User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout

Controller

msg:=check-

out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop

(for each cn in

cnList)

Identify objects that send

or receive messages,

passed as parameters or

return type.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-47

Classes Identified

User

Document

Loan

CheckoutGUI

DBMgr

CheckoutController

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-48

Steps for Deriving DCD

2) Identify methods belonging to each class and fill

them in the DCD:

– Methods are identified by looking for messages that label

an incoming edge of the object.

– The sequence diagram may also provide detailed

information about the parameters, their types, and return

types.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-49

Identify Methods

:Checkout
GUI

<<uid,

cnList>>

:DBMgr

u:=get

User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout

Controller

msg:=check-

out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop

(for each cn in

cnList) methods of

CheckoutController

methods of

Document

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-50

Fill In Identified Methods

User

Document

Loan

CheckoutGUI

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

isAvailable() : boolean

setAvailable(a:boolean)

<<singleton>>

CheckoutController

checkout(uid,cnList)

process(cn:String[])

create(u:User, d:Document)

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-51

Steps for Deriving DCD

3) Identify and fill in attributes from sequence diagrams

and domain model:

– Attributes are not objects and have only scalar types.

– Attributes may be used to get objects.

– Attributes may be identified from getX() and setX(...)

methods.

– Needed attributes may also be found in the domain model.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-52

:Checkout
GUI

<<uid,

cnList>>

:DBMgr

u:=get

User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout

Controller

msg:=check-

out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop

(for each cn in

cnList)

Identify Attributes

attribute of User

attribute value

attributes of

Document

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-53

Fill In Attributes

display(msg:String)

User

Document

Loan

CheckoutGUI

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

isAvailable() : boolean

setAvailable(a:boolean)

<<singleton>>

CheckoutController

checkout(uid,cnList)

process(cn:String)

create(u:User, d:Document)

uid : String

callNum : String

isAvailable : boolean

dueDate : Date

from domain

model

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-54

Steps for Deriving DCD

4) Identify and fill in relationships from sequence

diagram and domain model:

– An arrow from one object to another is a call and hence it

indicates a dependence relationship.

– An object passed as a parameter or return type/value

indicates an association or uses relationship.

– Two or more objects passed to a constructor may indicate

an association and an association class.

– The domain model may contain useful relationships as

well.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-55

Identify Relationships

:Checkout
GUI

<<uid,

cnList>>

:DBMgr

u:=get

User(uid):User

d:=get
Document(cn)

l:Loan

[a]create(u,d)

[a]save(l)

d:Document

[a]setAvailable(false)

[a]save(d)

:Checkout

Controller

msg:=check-

out(uid, cnList)

[u!=null]
process(cnList)

a:=isAvailable()

<<msg>>

Loop

(for each cn in

cnList)

call
relationship

association w/ an

association class.

CheckoutController and

DBMgr use User.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-56

Fill In Relationships

display(msg:String)

User

Document

Loan

CheckoutGUI

DBMgr

getUser(uid)
getDocument(callNo)
saveLoan(loan)
saveDocument(book)

isAvailable() : boolean

setAvailable(a:boolean)

<<singleton>>

CheckoutController

checkout(uid,cnList)

process(cn:String)

create(u:User, d:Document)

uid : String

callNum : String

available : boolean

dueDate : Date

The dashed arrow lines denote uses

or dependence relationships.

<<create>>

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-57

From Sequence Diagram to Implementation

:Checkout
GUI

<<uid,cnList>>

 :DBMgr l:Loan

[a]create(u,d)

[a]saveLoan(l)

d:Document

[a]setAvailable(false)

[a]save-
Document(d)

[u!=null]
process(cnList)

a:=isAvailable():boolean

<<msg>>

Loop

(for each cn in cnList)

Patron
u:=
getUser(uid):
User

d:=get
Document(cn):
Document

public class CheckoutGUI {

 DBMgr dbm=new DBMgr ();

 public void process(String[] cnList) {

 for(int i=0; i<cnList.length; i++) {

 Document d=dbm.getDocument(cnList[i]);

 if (d.isAvailable()) {

 Loan l=new Loan(u, d); dbm.saveLoan(l);

 d.setAvailable(false); dbm.saveDocument(d);

 }

}

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

11-58

Applying Agile Principles

1. Value working software over comprehensive

documentation.

2. Good enough is enough.

Object-Oriented Software Engineering: An Agile Unified Methodology by David Kung

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

Chapter 12: User Interface

Design

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-60

Key Takeaway Points

• User interface design is concerned with the

design of the look and feel of the user

interfaces.

• The design for change, separation of concerns,

information-hiding, high-cohesion, low-

coupling, and keep-it-simple-and-stupid

software design principles should be applied

during user interface design.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-61

User Interface Design Activities

• Layout design for windows and dialog boxes.

• Design of interaction behavior.

• Design of information presentation schemes.

• Design of online support.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-62

Importance of User Interface Design

• The user interface is the sole communication

channel between the user and the system.

• Users’ feeling about the interface greatly

influences the acceptance of the system and

success of the project.

• User-friendly interfaces may improve an

organization’s productivity and work quality,

and reduce operating costs.

• Technology Acceptance Model (TAM) is used

in IS research all the time!

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-63

Graphical User Interface Widgets

• Container widgets

– window, dialog box, scroll pane, tabbed pane, and

layered pane, and others.

• Input, output and information presentation

widgets

– text-oriented I/O widgets, selection-oriented input

widgets, featured widgets

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-64

User Interface Design Process

(2) Produce a draft

design of windows

and dialogs

(3) Specify interaction

 behavior

(4) Implement a

prototype if desired
(1) Identify major

 system displays

(5) Evaluate UI

design with users

Actor-System

Interaction

Modeling Expanded

Use Cases

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-65

Edit State Diagram System Displays

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-66

Windows, Dialogs and Widgets

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-67

Layout Design of State Diagram Editor

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-68

State Diagram Editor Behavior (partial)

Initial Editor

Main

Window

Editor

Window w/a

Blank

Diagram

Editor

Window w/a

State Diagram

State Diagram

Selection

Dialog

File->New

Diagram

File->Open

Diagram

locate diagram,

OK

click State

button, click

canvas

add or delete a state or

transition,

File->Save, File->Close

[!saved]/display warning

message

Edit State/

Transition

Dialog

double-click a

state or transition

OK or

Cancel

Clear/clear all fields

Save State

Diagram As

Dialog

File->Save As

OK

File->Close

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-69

Using Prototypes

• Prototypes are useful for obtaining user

feedback.

• Types of prototypes

– Static approaches generate nonexecutable

prototypes.

– Dynamic approaches generate executable

prototypes.

– Hybrid approaches construct static prototypes

during the initial stage of prototype development

and switch to dynamic prototyping later.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-70

Evaluating User Interfaces with Users

• User interface presentation.

• User interface demonstration.

• User interface experiment.

• User interface review meeting.

• User interface survey.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-71

User Support Capabilities

• User support capabilities include online
documentation, context-dependent help, error
messages, and recovery.

• Online help should let the user find the needed
information easily.

• Context-dependent help is a user-friendly
design technique. Chain of responsibility
supports this.

• Error messages should be user-oriented, rather
than developer-oriented, and be easy to
understand.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-72

Recover from Undesired State

• Undo and redo operations (command pattern)

• Automatic backup and restore system states

(memento pattern)

• Exception handling

• Software fault tolerance

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-73

Guidelines for User Interface Design

• User interface design should be user-centric.

• The user interface should be consistent.

• Minimize switching between mouse mode and

keyboard mode.

– Provide keyboard shortcuts

– Especially for text-intensive applications

• A “nice feature” may not turn out to be that

“nice”.

• Eat your own cooking.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

12-74

Applying Agile Principles

• Active user involvement is imperative. A

collaborative and cooperative approach between all

stakeholders is essential.

• Requirements evolve but the timescale is fixed.

• Develop small, incremental releases and iterate. In

addition, focus on frequent delivery of software

products.

• A good enough user interface design is enough.

Value the working software over the design.

• Capture requirements at a high level; lightweight and

visual.

Object-Oriented Software Engineering: An Agile Unified Methodology by David Kung

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

Chapter 13: Object State Modeling

for Event-Driven Systems

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-76

Key Takeaway Points

• Object state modeling is concerned with the

identification, modeling, design, and

specification of state-dependent, reactive

behavior of objects.

• The state pattern reduces the complexity of

state behavior design and implementation, and

makes it easy to change.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-77

Object State Modeling

• Identification, modeling, analysis, design, and
specification of state-dependent reactions of objects
to external stimuli.

– What are the external stimuli of interest?

– What are the states of an object?

– How does one characterize the states to determine whether
an object is in a certain state?

– How does one identify and represent the states of a
complex object?

– How does one identify and specify the state-dependent
reactions of an object to external stimuli?

– How does one check for desired properties of a state
behavioral model?

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-78

State Behavior Modeling

• State dependent behavior is common in

software systems.

off

on

on off

engine

reverse

park

neutral

fwd

transmission

released

brake

up down

brake

What is the state dependent behavior of a car?

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-79

Basic Definitions

• An event is some happening of interest or a

request to a subsystem, object, or component.

• A state is a named abstraction of a subsystem/

object condition or situation that is entered or

exited due to the occurrence of an event.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-80

Object State Modeling Steps

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-81

Collecting & Classifying State Behavior Information

What to look for Example Classification Rule

Something of interest

happened

An online application

submitted.

Event E1

Mode of operation A cruise control operates

in activated/ deactivated

modes.

State S2

Conditions that govern

the processing of an

event

Turn on AC if room

temperature is high

Guard

condition

G1

An act associates with

an event

Push the lever down to

set the cruising speed.

Response R1

More rules are found in the textbook (p 322).

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-82

Constructing a Domain Model

• The domain model shows relationships
between the state dependent software and its
context.

State

Machine

 Source &

Destination 1

event 1a
event 1b

event 2a
event 2b

event 3a
event 3b
event 3c

resp. 1x
resp. 1y

resp. 2x
resp. 2y

resp. 3x

 Source &

Destination 2

 Source &

Destination 3

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-83

Cruise Control Domain Model

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-84

Converting to State Diagram

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-85

Cruising

Cancelled

Converting Events/Transitions to Function Calls

leverPulled(),

brakeApplied()

onOffButton

Pressed()

Cruise

Deactivated

Increasing

Speed

Decreasing

Speed

onOffButton

Pressed()

Cruise Activated

leverDown()/

setDesiredSpeed(),

Cruising

leverDown() /

setDesiredSpeed()

leverReleased()/

setDesiredSpeed()

leverReleased() /

setDesiredSpeed()

leverUpAnd

Hold()

leverUpAnd

Hold()

leverDown

AndHold()

leverUp()

leverDown

AndHold()

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-86

Update Design Class Diagram

• Add methods labeling the transitions to the

subject class:

CruiseControl

onOffButtonPressed()

leverDown()

leverUp()

brakeApplied()

leverDownAndHold()

leverUpAndHold()

leverPulled()

leverReleased()

setDesiredSpeed()

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-87

Implementing State Behavior

• Conventional approaches:

– nested switch approach

– using a state transition matrix

– using method implementation

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-88

Conventional Implementation: Nested Switches

• Using nested switch statements

switch (STATE) {

 case Init: switch (EVENT) {

 case State button clicked:

 set cursor to crosshair, STATE=AddState;

 break;

 case Trans button clicked:

 set cursor to crosshair; STATE=AddTransition;

 break; }

 case AddState: switch (EVENT) { ... }

 case AddTransition: switch (EVENT) { ... }

 case ...

}

• Using a state transition matrix

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-89

Conventional State Transition Matrix

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-90

Using Method Implementation

• State behavior of a class is implemented by

member functions that denote an event in the

state diagram.

• The current state of the object is stored in an

attribute of the class.

• A member function evaluates the state variable

and the guard condition, executes the

appropriate response actions, and updates the

state variable.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-91

Problems with Conventional Approaches

• High cyclomatic complexity (number of states

multiplied by number of transitions).

• Nested case statements make the code difficult

to comprehend, modify, test, and maintain.

• Difficult to introduce new states (need to

change every event case).

• Difficult to introduce new events (need to

change every state case).

• Solution: applying state pattern

Chapter 13 -Applying State Pattern.ppt

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-92

For your personal edification…

…Thinking on your own!

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-93

Transformation Schema for Real Time Systems

• Ward and Mellor extended DFD with control

flows and control processes.

• Control processes are modeled by Mealy type

state machines.

• Control processes control the ordinary data

transformational processes.

• Control flows represent events or triggers to

control processes and responses of control

processes to transformational processes.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-94

Transformation Schema for Real Time Systems

• Real time data flows, which must be processed

quickly enough to prevent losing the data.

• Data flows and control flows may be related

using logical connectors.

• Timing may be specified for state transitions

and data transformation processes.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-95

transformational processes, representing

computations or information processing

activities

control processes, representing system’s state

dependent behavior, which is modeled by a

Mealy type state machine

ordinary or discrete data flow

event flow or control flow that triggers a transition of

the state machine of a control process, or a command

from a control process to a transformational process

continuous data flow, which must be processed

in real time

Real Time Systems Design

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-96

Real Time Systems Design

a

b

P
indicates that both data flow a and data flow b

are required to begin executing process P

a

b

P
indicates that either data flow a or data

flow b is required to begin executing

process P

+

These logical connector can be applied to both data flow and

control flow and transformation process and control process.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-97

Real Time Systems Design

Z

Z

X

Y

Y

X Z

Z

Two subsets of Z are used by two different

successor processes.

All of Z is used by two different successor

processes.

Z is composed of Two subsets provided by two

different predecessor processes.

All of Z is provided by either one of two

predecessor processes.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-98

Cruise Control Example

Cruise

Control

2.2.1

Record
Rotation

Rate
2.2.2

Increase

Speed 2.2.3
Maintain
Constant

Speed
2.2.4

Return to
Previous

Speed
2.2.5

resume

brake

enable/disable

start/stop
increase
speed

rotation rate trigger

speed reached

enable/

disable

throttle
control

rotation rate

throttle
position

rotation rate set point

rotation rate

throttle
position

throttle
control throttle

position

enable/

disable

rotation
rate

enable/

disable

throttle
control

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-99

Maintain Speed

Increase Speed

 Resume Speed

 Interrupted

enable/trigger “Record Rotation Rate”,

enable “Maintain Constant Speed
brake/disable “Maintain

Constant Speed”

stop increasing speed/disable “Increase

Speed”, trigger “Record Rotation Speed”

enable “Maintain Constant Speed”

brake/disable “Return

to Previous Speed”

resume/enable “Return

to Previous Speed”

start increase speed/disable

“Maintain Constant Speed”,

enable “Increase Speed”

brake/disable

“Increase Speed”

Cruise Control State Machine

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-100

Timed State Machine

• Time intervals can be used to label the state

transitions.

• The time intervals define the timing lower bounds

and upper bounds allowed for processing the event

and executing the list of actions.

• The time interval can be decomposed to define the

allowed times for processing the event, and executing

each of the actions in the action list.

• Similarly, time can be defined for state entrance

action, state exit action, and state activity.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-101

track(contact)/
(targetList.fit

(contact)[5,8])

State Diagram for Real Time Systems

S1 S2

event/action
[x,y]

Time interval.

The time allowed for processing

the event and executing the

action is x to y time units.

S1 S2

event/action
[x]

Time interval.

The time allowed for processing

the event and executing the

action is x time units.

S1 S2

event[x,y]/
action[u,v]

The time allowed for processing

the event is x to y time units

and executing the action is u to

v time units.

S1 S2

The time allowed for targetList

object to fit the contact with a

tracked target is 5 to 8 time

units.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-102

Applying Agile Principles

• Work closely with the customer and users to

identify and model the state behavior.

• Capture the state behavior at a high level,

lightweight, and visual.

• Value working software over comprehensive

documentation—do barely enough modeling.

Object-Oriented Software Engineering: An Agile Unified Methodology by David Kung

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

Chapter 14. Activity Modeling

for Transformational Systems

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-104

Key Takeaway Points

• Activity modeling deals with the modeling of

the information processing activities of an

application or a system that exhibits

sequencing, branching, concurrency, as well as

synchronous and asynchronous behavior.

• Activity modeling is useful for the modeling

and design of transformational systems.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-105

What Is Activity Modeling

• Activity modeling focuses on modeling and

design for

– complex information processing activities and

operations

– information flows and object flows among the

activities

– branching according to decisions

– synchronization, concurrency, forking, and joining

control flows

– workflow among the various departments or

subsystems

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-106

Why Activity Modeling

Systems analysis and design activities need to:

• describe current information processing

activities in the organization or existing system

(modeling of the existing system) to help the

development team understand the existing

business

• describe information processing with the

proposed solution (system design)

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-107

Activity Diagram

• An activity diagram models the information

processing activity in the real world (analysis

model) or the system (design model).

• A UML activity diagram is a combination of

– flowchart diagram

• for decision making or branching

– data flow diagram

• for information processing and data flows

– Petri net diagram

• for various control flows

• for synchronization, concurrency, forking, and joining

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-108

A Flowchart

x=x+1

x<10

y=y+1

y<10

decision

making

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-109

A Data Flow Diagram

Verify

Order

Customer

Books

Customers

Generate

Requisition

to Publisher

Publishers

Book

details

Credit status

orders

Pending orders

verified

order

Order details

Publisher

Purchase

orders

address

1 2

information

processing

activity

data flow

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-110

A Petri Net Example

a new job arrives

begin

process

process

done

job leaves

job

waiting

processor available

job being

processed

job ready to go

You can interpret

the places and

transitions. That

is, assigning

meanings to them.

events

condition of
system

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-111

Activity Diagram Notions and Notations

Activity or action

Conditional branching

Control flow

Forking

Joining or synchronization

Swim lane to represent info

and control flow between

departments/subsystems

Object flow obj:Class

Initial node, final node, and

flow final node

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-112

Box Office Order Processing

Set Up Order

Mail Package

Assign Seats Award Bonus

Debit Account

Assign Seats

Charge Credit

Card

[single order]

[subscription]
activity

forking to create

concurrent threads

joining to synchronize

concurrent threads

branching

merging alternating

threads

branching

condition

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-113

[ok]

Activity Diagram: Swim Lane
Customer Sales Warehouse

Place Order

Verify Order

Accounting

 : NewOrder

Fill Order

[reject]

Show Msg

Send Invoice : Invoice

Make Payment

Pack Items

Ship Order

Process Payment

Close Order

object flow

branching

forking

merging

alternating

routes

joining

concurrent

threads

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-114

Activity Decomposition and Invocation

• A complex activity can

be decomposed and

represented by another

activity diagram.

• The rake-style symbol is

used to signify that the

activity has a more

detailed activity

diagram.

Database

Another DB

An

Activitiy

<<Server>>

It is described by

a more detailed

activity diagram.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-115

Expansion Region

• An expansion region is

a subset of activities or

actions that should be

repeated for each

element of a collection.

• The repeated region

may produce one or

more collections.

Ship Order

Add Item to

shipment

Place Order

Add Cost to

Invoice

Send Invoice

:Order

:LineItem

:Item :LineItemCost

:Shipment :Invoice

A collection of

line items

Expansion

region

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-116

Using Activity Diagram

• Modeling, analysis and design of complex

information processing activities involving one

or all of the following:

– control flows

– object flows or data flows

– access to databases or data depositories

– conditional branching

– concurrent threads

– synchronization

• Work flow among multiple organizational

units and/or subsystems.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-117

Using Activity Diagram

• Activity diagram can be used alone or used

with the other diagrams.

• Activity diagram can be used to model the

information processing activity of a system,

subsystem or component, or a method of a

class.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-118

Steps for Activity Modeling

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-119

Relation to Other Diagrams

• An activity may be a use case, or suggest a use
case. Therefore, activity modeling is useful for
identifying use cases.

• Activity diagrams are useful for showing
workflows and control flows among use cases.

• Activity modeling is useful for processing
complex requests in a sequence diagram.

• An activity may exhibit state-dependent
behavior, which can be refined by state
modeling.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-120

Relation to Other Diagrams

• A state may represent a complex process,
which can be modeled by an activity diagram.

• Each object sent from one activity to another
should appear in the design class diagram
(DCD), or the domain model.

• Swim lanes may suggest object classes in the
domain model, or the DCD. The activities of
the swim lane identify operations for the class.

• A complex activity may decompose into
lower-level activities. Some of these may be
operations of the class.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-121

Class Exercise

• Describe the activities for doing one of the

following:

– preparing and submitting a project proposal in

your organization

– buying a new or used car

– workflow for configuration management

• Convert the description into an activity

diagram.

• Review the diagram and identify potential

problems.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-122

Applying Agile Principles

• Value working software over comprehensive

documentation.

• Active user involvement is imperative.

• A collaborative and cooperative approach

between all stakeholders is essential.

• Capture requirements at a high level; make

them lightweight and visual.

• Do barely enough activity modeling.

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

13-123

For your personal edification…

…Thinking on your own!

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-124

Petri Nets

places, representing an abstract condition

transitions, representing an event or happing

relationship between a place and a transition,

it can only come from a place to a transition

or from a transition to a place

tokens, which can be placed in places to

indicate that the condition is true

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-125

A Petri Net Example

a new job arrives

begin

process

process

done

job leaves

job

waiting

processor available

job being

processed

job ready to go

You can interpret

the places and

transitions. That

is, assigning

meanings to them.

events

condition of
system

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-126

• A transition is enabled if

and only if each of its

input places contains a

token.

• A transition can be fired

sooner or later if it is

enabled.

• Firing a transition

– removes a token from each

of its input places AND

– places a token into each of

its output places

t1

t2

t3

t4

Petri Net Execution

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-127

An initial marking is an

assignment of tokens to places. t1

t2

t3

t4

t1 is always enabled, because it does not

have an input place.

t2 is now enabled

t3 is now enabled

firing t1 places a token in p1

p4

p3

p2

p1

firing t3 removes one token from

p3 and places one token in p4 and p2

firing t2 removes one token from

each of p1 and p2 and places one

token in p3

Petri Net Marking

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-128

a new job arrives

begin

process

process

done

job leaves

“a new job arrives” is always enabled,

meaning a new job can arrive anytime.

“begin process” is now enabled

“process done” is now enabled

“job leaves” is now enabled

job

waiting

processor

available

job being

processed

job ready to go

fire “a new job arrives”

job is being processed

fire “begin process”

fire “process done”

job is ready to leave & processor is

available again

fire “job leaves”

Petri Net Marking

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-129

t1

t2

t3

t4

p1
p2

p3

p4

(p1, p2, p3, p4)

(0, 1, 0, 0)

t1

(1, 1, 0, 0)

t1

(1, 1, 0, 0)

t2

(0, 0, 1, 0)

Analysis of Petri Net

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-130

Petri Net Analysis Tree

t1

t2

t3

t4

p1
p2

p3

p4

• A marking is presented by a list

of “0” and “1”:

 (n1, n2, ..., nk)

 where ni = 1 if place i contains a

token

• The root of the tree denotes the

initial marking (initial system

state).

• Thus, the initial marking and

root of tree for the Petri net on

left is:

(0, 1, 0, 0).

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-131

t1

t2

t3

t4

p1
p2

p3

p4

• Firing a transition grows

the tree with a new

branch, labeled by the

transition fired and the

resulting new marking.

Petri Net Analysis Tree

(0, 1, 0, 0)

(0, 0, 1, 0)

t2

t1

t2

t3

t4

p1
p2

p3

p4

(1, 1, 0, 0)

t1

t1

t2

t3

t4

p1
p2

p3

p4

t1

t1

t2

t3

t4

p1
p2

p3

p4

(1, 1, 0, 0)

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-132

t1

t2

t3

t4

p1 p2

p3

p4

(0, 1, 0, 0)

t1

(w, 1, 0, 0)

t2

(w, 0, 1, 0)

t3

(w, 1, 0, 1)

t4

(w, 1, 0, 0)

t2

(w, 0, 1, 0)

w denotes a
large number
of tokens
because t1
can be fired
many times.

These have occurred at a

higher level.

Petri Net Analysis

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

14-133

Petri Net Expressiveness

parallelism

sequencing

synchronization

exclusion

