High-Level Design

Design is not just what it looks like and feels like. Design is how it works.

—STEVE JOBS

Design is easy. All you do is stare at the screen until drops of blood form on

your forehead.

—MARTY NEUMEIER

WHAT YOU WILL LEARN IN THIS CHAPTER:

The purpose of high-level design
How a good design lets you get more work done in less time
Specific things you should include in a high-level design

Common software architectures you can use to structure an application

Yy Y ¥ ¥ X

How UML lets you specify system objects and interactions

High-level design provides a view of the system at an abstract level. It shows how the major
pieces of the iinished application will fit together and interact with each other.

A high-level design should also specify assumptions about the environment in which the
finished application will run. For example, it should describe the hardware and software you
will use to c]v:rvel:jp the applicatinn, and the hardware that will Evﬁntuany run the program.

The high-level design does not focus on the details of how the pieces of the application will
work. Those details can be worked out later during low-level design and implementation.

Before you start learning about specific items that should be part of the high-level design,

you should understand the purpose of a high-level design and how it can help you build an
application.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

88 | CHAPTERS HIGH-LEVEL DESIGN

THE BIG PICTURE

You can view software development as a process that chops up the system into smaller and smaller
pieces until the pieces are small enough to implement. Using that viewpoint, high-level design is the
first step in the chopping up process.

The goal is to divide the system into chunks that are self-contained enough that you could give them
to separate teams to implement.

PARALLEL IMPLEMENTATION

Suppose you’re building a relatively simple application to record the results of Twister
games for a championship. It needs to store the names of the players in each match,
the date and time they played, and the order in which they fell over during play.

You might break this application into two large pieces: the database and the user
interface. You could then assign those two pieces to different groups of developers
to implement in parallel.

(You’ll see in the rest of this chapter that there are actually a lot of other pieces you
might want to specify even for this simple application.)

There are a lot of variations on this basic theme. On a small project, for example, the project’s
pieces might be small enough that they can be handled by individual developers instead of teams.

In a large project, the initial pieces might be so big that the teams will want to create their own
medium-level designs that break them into smaller chunks before trying to write any code. This can
also happen if a piece of the project turns out to be harder than you had expected. In that case, you
may want to break it into smaller pieces and assign them to different people.

ADDING PEOPLE

Breaking an existing task into smaller pieces is one of the few ways you can
sometimes add people to a project and speed up development.

Adding new people to the same old tasks usually doesn’t help and often actually slows
development as the new people get up to speed and get in each other’s way. (It can

feel like you're in a leaky lifeboat with a single bucket and more people are climbing
aboard. You may enjoy the company, but their extra weight will make you sink faster.)

However, if you can break a large task into smaller pieces and assign them to
different people, you may speed things up a bit. The new people still need time
come up to speed, so this won’t always help, but at least people won’t trip over each
other trying to perform the same tasks.

In some projects, you may want to assign multiple pieces of the project to a single team, particularly
if the pieces are closely related. For example, if the pieces pass a lot of data back and forth, it will
be helptul if the people building those pieces work closely together. (Multitier architectures, which

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

What to Specify | 89

are described in the “Client/Server” section later in this chapter, can help minimize this sort of
interaction.)

Another situation in which this kind of close cooperation is useful is when several pieces of the
application all work with the same data structure or with the same database tables. Placing the data
structure or tables under the control of a single team may make it easier to keep the related pieces
synchronized.

WHAT TO SPECIFY

The stages of a software engineering project often blur together, and that’s as true for high-

level design as it is tor any other part of development. For example, suppose you’re building an
application to run on the Windows phone plattorm. In that case, the tact that your hardware
plattorm is Windows phones should probably be in the requirements. (Although you may want to
add extra details to the high-level design, such as the models of phones that you will test.)

Exactly what you should specity in the high-level design varies somewhat, but some things are
constant for most projects. The tollowing sections describe some of the most common items you
might want to specify in the high-level design.

Security

The hrst thing you see when you start most applications is a login screen. That’s the hrst obvious
sign of the application’s security, but it’s actually not the hrst piece. Betore you even log in to the
application, you need to log in to the computer.

Your high-level design should sketch out all the application’ security needs. Those needs may
include the following:

> Operating system security— 1 his includes the type of login procedures, password expiration
policies, and password standards. (Those annoying rules that say your password must
include at least one letter, one number, one special character like # or %, and three Egyptian
hieroglyphs.)

> Application security—Some applications may rely on the operating system’s security and not
provide their own. Others may use the operating system’s security to make the user reenter
the same username and password. Still others may use a separate application username and
password. Application security also means providing the right level of access to ditferent
users. For example, some users might not be allowed access to every part of the system. (I’ll
say more about this in the section “User Access” later in the chapter.)

» Data security—You need to make sure your customer’s credit card information doesn’t fall
into the hands of Eastern European hackers.

> Network security—FEven it your application and data are secure, cyber banditos might steal
your data trom the network.

> Physical security—Many software engineers overlook physical security. Your application
won’t do much good if the laptop it runs on is stolen from an unlocked othice.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

90 | CHAPTERS HIGH-LEVEL DESIGN

All these torms ot security interact with each other, sometimes in non-obvious ways. For example,

if you reset passwords too often, users will pick passwords that are easier to remember and possibly
easier for hackers to guess. You could add your name to the month number (Rod1 for January,
Rod2 for February, and so forth), but those would be easy to guess. If you make the password rules
too strict (requiring two characters from each row of the keyboard), users may write their passwords
down where they are easy to find.

Physical security also applies to passwords. I've seen large customer service environments in
which users often needed manager approval for certain kinds of common operations. In fact,
those overrides were so common that the manager didn’t have time to handle them and get any
other work done. The solution they adopted was to write the manager’s username and password
on a whiteboard at the front of the room so that everyone could use it to pertorm their own
overrides.

The password was insecure, so any hacker who got into the room could do just about anything with
the system. (Fortunately, the room had no windows and was dithcult to get into without the right
badge and passwords.)

This also meant that any user could impersonate the manager and do just about anything. If that’s
the case, why bother having user permissions?

It you need to make 50 exceptions per day, then they're not actually exceptions. The solution would
have been to not require manager approval tor such a common task. Then the manager could have
kept her password private and used overrides only tor truly important stutf.

Hardware

Back in the old days when programmers worked by candlelight on treadle-powered computers,
hardware options were limited. You pretty much wrote computers for large mainframes or desktop
computers. You had your pick of a few desktop vendors, and you could pick Windows or Macintosh
operating systems, but that was about it.

These days you have a lot more choices and you need to specify the ones that you’ll be using. You
can build systems to run on mainframes (yes, they still exist), desktops, laptops, tablets, and phones.
Mini-computers act sort of as a mini-mainframe that can serve a handful of users. Personal Digital
Assistants (PDAs) are small computers that are basically miniature tablets.

Wearable devices include such gadgets as computers strapped to the wearer’s wrist (sort of like
a PDA with a wrist strap and possibly extra keys and buttons), wristbands, bracelets, watches,
eyeglasses, and headsets.

Additional hardware that you need to specify might include the following:
» Printers

Network components (cables, modems, gateways, and routers)

Servers (database servers, web servers, and application servers)

Specialized instruments (scales, microscopes, programmable signs, and GPS units)

Y ¥ Y Y

Audio and video hardware (webcams, headsets, and VOIP)

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

What to Specify | 91

With all the available options (and undoubtedly many more on the way), you need to specity the
hardware that will run your application. Sometimes, this will be relatively straighttorward. For
example, your application might run on a laptop or in a web page that could run on any web-
enabled hardware. Other times the hardware specification might include multiple devices connected
via the Internet, text messages, a custom network, or by some other method.

VNN Selecting a Hardware Platform

Suppose you’re building an application to manage the fleet of dog washing vehicles run by The
Pampered Poodle Emergency Dog Washing Service. When a customer calls in to tell you Fifi ran afoul
of a skunk, you dispatch an emergency dog-washer to the scene.

In this case, your drivers might access the system over cell phones. A desktop computer back at the
othce would hold the database and provide a user intertace to let you do everything else the business
needs such as logging customer calls, dispatching drivers, printing invoices, tracking payments, and
ordering doggy shampoo.

For this application, you would specify the kind of phones the drivers will use (such as Windows, 1085,
or Android), the model of the computer used to hold the database and business parts of the application,
and the type of network connectivity the application will use. (Perhaps the database desktop serves data
on the Internet and the ph:jnes download data from therﬁ.]

Another strategy would be to have the desktop serve information to the drivers as web pages. Then the
drivers could use any web-enabled device (smartphone, tablet, Google Glass) to view their assignments.

User Interface

During high-level design, you can sketch out the user interface, at least at a high level. For example,
yvou can indicate the main methods for navigating through the application.

Older-style desktop applications use forms with menus that display other forms. QOften the user
can display many forms at the same time and switch between them by clicking with the mouse (or
touching if the hardware has a touch screen).

In contrast, newer tablet-style applications tend to use a single window (that typically covers the
entire tablet, or whatever hardware you’re using) and buttons or arrows to navigate. When you click
a button, a new window appears and fills the device. Sometimes a Back button lets you mowve back
to the previous window.

Whichever navigational model you pick, you can specity the forms or windows that the application
will include. You can then verity that they allow the user to perform the tasks defined in the
requirements. In particular, you should walk through the user stories and use cases and make sure
vou’ve included all the forms needed to handle them.

In addition to the application’s basic navigational style, the high-level user interface design can
describe special features such as clickable maps, important tables, or methods for specifying system
settings (such as sliders, scrollbars, or text boxes).

This part of the design can also address general appearance issues such as color schemes, company
logo placement, and form skins.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

92 | CHAPTERS HIGH-LEVEL DESIGN

FOLLOW EXISTING PRACTICES

Most users have a lot of experience with previous applications, and those
applications follow certain standardized patterns. For example, desktop
applications typically have menus that you access from a form’s title bar. The menus
drop down below and submenus cascade to the right. That’s the way Windows
applications have been handling menus for decades and users are familiar with how
they work.

If your application sticks to a similar pattern, users will feel comtortable with the
application with little extra training. They already know how to use menus, so they
won’t have any trouble using yours. Instead they can concentrate on learning how
to use the more interesting pieces of your system.

Now suppose your application changes this kind of standard interaction. Perhaps
you access the menus by clicking a little icon on the right edge of the toolbar and
then menus cascade out to the left instead of the right. Or perhaps there are no
menus, just panels hlled with icons you can click to open new torms. In that case,
users will need to learn how to use your new system. That will at least lead to some
unnecessary contusion, and it might create a lot of annoyance tor the users.

(I use one tool in particular, which I won’t name, that for some reason thinks it
knows a better way to handle menus, toolbars, and toolboxes. It’s trustrating,
incredibly annoying, and sometimes leads to major outbreaks ot swearing.)

Unless you have a good reason to change the way most applications already work,
stick with what the users already know.

You don’t need to specify every label and text box for every form during high-level user interface
design. You can handle that during low-level design and implementation. (Often the controls you
need follow from the database design anyway, so you can sometimes save some work if you do the
database design first. Some tools can even use a database design to build the first version of the
torms for you.)

Internal Interfaces

When you chop the program into pieces, you should specify how the pieces will interact. Then the
teams assigned to the pieces can work separately without needing constant coordination.

It’s important that the high-level design specifies these internal interactions clearly and
unambiguously so that the teams can work as independently as possible. If two teams that need

to interact don’t agree on how that interaction should occur, they can waste a huge amount of
time. They may waste time squabbling about which approach is better. They will also waste time
if one team needs to :h:ange the interface and that forces the other team to ch:ange Its interfnca,
too. The problem increases dramatically if more than two teams need to interact through the same
interface.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

What to Specify | 93

It’s worth spending some extra time to dehne these sorts of internal intertaces caretully betore
developers start writing code. Untortunately, you may not be able to dehine the intertaces betore
writing at least some code. In that case, you may need to insulate two project teams by defining a
temporary interface. After the teams have written enough code to know what information they need
to exchange, they can define the fhinal interface.

DEFERRED INTERFACES

I worked on one project where two teams needed to pass a bunch of information
back and forth. Of course, at the beginning of the project, neither team had written
any code to work with the other team, so neither team could call the other. We also
weren’t sure what data the two teams would need to pass, so we couldn’t specity
the interface with certainty.

To get both teams working quickly, the high-level design specihied a text file format
that the teams could use to load test data. Instead of calling each other’s code,

the teams could read data from a test data hile. They were also free to modity the
tormats of their hles as their needs evolved.

After several months of work, the two teams had written code to process the data
and their needs were better defined. At that point, they agreed on a format tor
passing data and switched trom loading data from data files to actually calling each
other’s code.

It would have been more efficient to have defined the perfect interface at the
beginning during high-level design, but that wasn’ an option. Using text files to act
as temporary interfaces allowed both teams to work independently.

(The multitier design described in the “Architecture” section later in this chapter
does something similar.)

External Interfaces

Many applications must interact with external systems. For example, suppose you’re building a
program that assigns crews for a large chartered fishing company. The application needs to assign
a captain, first mate, and cook for each trip. Your program needs to interact with the existing
employee database to get information about crew members. (You don’t want to assign a boat three
cooks and no captain.) You might also need to interact with a sales program that lets salespeople
book fishing trips.

In a way, external interfaces are often easier to specify than internal ones because you usually don’t
have control over both ends of the interface. If your application needs to interact with an existing
system, then that system already has interface requirements that you must meet.

Ccrnvers&l}r, if you want future systems to interface with yours, you can prnbably Spfcif}r whatever
interface makes sense to you. Systems dE‘u’EleEd later need to meet your requirements. (Iry to make
yvour interface simple and flexible so that you don’t get flooded with change requests.)

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

94 | CHAPTERS HIGH-LEVEL DESIGN

Architecture

An application’s architecture describes how its pieces fit together at a high level. Developers use
a lot of “standard™ types of architectures. Many of these address particular characteristics of the
problem being solved.

For example, rule-base systems are often used to handle complex situations in which solving a
particular problem can be reduced to following a set of rules. Some troubleshooting systems use
this approach. You call in because your computer can’t connect to the Internet, and a customer rep
from some distant time zone asks you a sequence of questions to try to diagnose the problem. The
rep reads a question off a computer screen, you answer, and the rep clicks the corresponding button

to get to the next question. Rules inside the rep’s diagnostic system decide which question to give
you next.

Other architectures attempt to simplify development by reducing the interactions among the
pieces of the system. For example, a component-based architecture tries to make each piece

of the system as separate as possible so that ditferent teams of developers can work on them
separately.

The following sections describe some of the most common architectures.

Monolithic

In a monolithic architecture, a single program does everything. It displays the user intertace,
accesses data, processes customer orders, prints invoices, launches missiles, and does whatever else
the application needs to do.

This architecture has some significant drawbacks. In particular, the pieces of the system are tied
closely together, so it doesn’t give you a lot of tlexibility. For example, suppose the application stores
customer address data and you later need to change the address tormat. (Perhaps you add a field to
hold suite numbers.) Then you also need to change every piece of code that uses the address. This
may not be too hard, but it means the programmers working on related pieces of code must stop
what they’re doing and deal with the change before they can get back to their current tasks. (The
multitier architectures described in the next section handle this better, allowing the ditterent teams
of developers to work more independently.)

A monolithic architecture also requires that you understand how all the pieces of the system ft
together trom the beginning of the project. It you get any of the details wrong, the tight coupling
between the pieces of the system makes ixing them later dithicult.

Monolithic architectures do have some advantages. Because everything is built into a single
program, there’s no need for complicated communication across networks. That means you don’t
need to write and debug communication routines; you don’t need to worry about the network going
down; and you don’t need to worry about network security. (Well, you still need to worry about
some hacker sneaking in through your network and attacking your machines, but at least you don™
need to encrypt messages sent between different parts of the application.)

Monolithic architectures are also useful tor small applications where a single programmer or team is
working on the code.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

What to Specify | 95

Client/Server

A client/server architecture separates pieces of the system that need to use a
particular function (clients) from parts of the system that provide those functions User

(servers). That decouples the client and server pieces of the system so that Interface

dE'ﬁ-"EIDpEI’S cdan “-’Dl'{{ 011 thEI’I’l Sﬂpﬂfﬂtﬁl}-’. | |

For example, many applications rely on a database to hold information about

Database
"-..._______________...-r"'

customers, products, orders, and employees. The application needs to display that
information in some sort of user interface. One way to do that would be to
integrate the database directly into the application. Figure 5-1 shows this situation FIGURE 5-1: An

schematically. application can
directly hold its

O ne prr::hlem with this d&sign is that multiple own data.

users cannot use the same data. You can fix

that problem by moving to a two-tier [User]

architecture where a client (the user interface) Interface

is separated from the server (the database). — SN

Figure 5-2 shows this design. The clients and Database

server communicate through some network [User]

such as a local area network (LAN), wide area Interface

network (WAN), or the Internet. C—

In this example, the client is the user interface FIGURE 5-2: In a two-tier architecture, the clientis

(two instances of the same program) and separate from the server.

the server is a database, but that need not

automatic stock purchases, and the server could be a program that

Interface Interface

be the case. For example, the client could be a program that makes
[User] [User J

scours the Internet tor information about companies and their stocks.

The two-tier architecture makes it easier to support multiple clients
with the same server, but it ties clients and servers relatively closely
together. The clients must know what format the server uses, and if
vou change the way the server presents its data, you need to change

the client to match. That may not always be a big problem, but it can

mean a lot of extra work, pﬂrticularly‘ in the bﬁginning of a project Middle Tier

when the client’s and server’s needs aren’t completely known.

You can help to increase the separation between the clients and server
if you introduce another layer between the two to create the three-
tier architecture, as shown in Figure 5-3.

In Figure 5-3, the middle tier is separated trom the clients and the

server by networks. The database runs on one computer, the middle I|

: : : Database
tier runs on a second computer, and the instances of the client run on

till oth ters. 1 his isn’t th lv wav in which the pi t
511)] er CCJI'I'IPLI ers 115 151 e on } W.—]}' In wnicn c PIECES 'D FIGURE 5-3: A three—tier

architecture separates clients
and servers with a middle tier.

the system can communicate. For example, in many applications the
middle tier runs on the same computer as the database.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

96 | CHAPTERS HIGH-LEVEL DESIGN

In a three-tier architecture, the middle tier provides insulation between the clients and server. In
this example, it provides an interface that can map data between the format provided by the server
and the format needed by the client. If you need to change the way the server stores data, you need

to update only the middle tier so that it translates the new format into the version expected by the
client.

Conversely, if the client’s data needs change, vou can modifyv the middle tier to insert fake data until
¥ B, ¥ !
you have a chance to update the server to prr:-vide the actual data.

The separation provided by the middle tier lets ditferent teams work on the client and server without
interfering with each other too much.

In addition to providing separation, a middle tier can perform other actions that make the data
easier to use by the client and server. For example, suppose the client needs to display some sort
of aggregate data. Perhaps Martha’s Musical Mechanisms needs to display the total number of
carillons sold by each employee for each of the last 12 quarters. In that case, the server could store
the raw sales data, and the middle tier could aggregate the data betore sending it to the client.

TIER TERMINOLOGY

Sometimes, the client tier is called the presentation tier (because it presents
information to the user); the middle tier is called the logic tier (because it contains
business logic such as aggregating data tor the presentation tier); and the client tier
is called the data tier (particularly it all it does is provide data).

You can define other multitier architectures (or N-tier architectures) that use more than three tiers
if that would be helpful. For example, a data tier might store the data, a second tier might calculate
aggregates and perform other calculations on the data, a third tier might use artificial intelligence
techniques to make recommendations based on the second tier’s data, and a fourth tier would be a
presentation tier that lets users see the results.

BEST PRACTICE

Multitier architectures are a best practice, largely because of the separation they
provide between the client and server layers. Most applications don’t use more than
three tiers.

Component-Based

In component-based software engineering (CBSE), you regard the system as a collection of loosely
coupled components that provide services for each other. For example, suppose you’re writing a
system to schedule employee work shitts. The user interface could dig through the database to

see what hours are available and what hours an Empln}fee can work, but that would tie the user
interface clc}sal}' to the database’s structure.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

What to Specify | 97

An alternative would be to have the user interface ask

components for that information, as shown in Figure 5-4. (UML ﬁ:its
provides a more complex diagram for services that is described in Assitn / Available
the section “UML” later in this chapter.) Employee

The Assign Employee Hours user interface component would ours \ Employee
use the Shift Hours Available component to ind out what hours A:?I:rbsle
were not yet assigned. It would use the Employee Hours Available

component to find out what hours an employee has available. After
FIGURE 5-4: In a component-

based architecture, components
help decouple pieces of code.

assigning new hours to the employee, it would update the other
two components so that they know about the new assignment.

A component-based architecture decouples the pieces of code
much as a multitier architecture does, but the pieces are all contained within the same executable
program, so they communicate directly instead of across a network.

Service-Oriented

A service-oriented architecture (SOA) is similar to a component-based architecture except the pieces
are implemented as services. A service is a selt-contained program that runs on its own and provides
some kind ot service tor its clients.

Sometimes, services are implemented as web services. Those are simply programs that satisty certain
standards, so they are easy to invoke over the Internet.

DEFINING SOA

Some big software vendors such as IBM and Oracle also define Service Component
Architecture (SCA). This is basically a set of specihcations tor SOA dehned by those
companies.

Data-Centric

Data-centric or database-centric architectures come in a variety of flavors that all use data in some
central way. The following list summarizes some typical data-centric designs:

> Storing data in a relational database system. This is so common that it’s easy to think of as a
simple technique for use in other architectures rather than an architecture of its own.

> Using tables instead of hard-wired code to control the application. Some artificial intelligence
applications such as rule-based systems use this approach.

> Using stored procedures inside the database to perform calculations and implement business
logic. This can be a lot like putting a middle tier inside the database.

Event-Driven

In an event-driven architecture (EDA), various parts of the system respond to events as they occur.
For example, as a customer order for robot parts moves through its life cycle, different pieces of
the system might respond at different times. When the order is created, a fulfillment module might

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

98 | CHAPTERS HIGH-LEVEL DESIGN

notice and print a list of the desired parts and an address label. When the order has been shipped,
an invoicing module might notice and print an invoice. When the customer hasn’t paid the invoice
tor 30 days, an enforcement module might notice and send RoboCop to investigate.

Rule-Based

A rule-based architecture uses a collection of rules to decide what to do next. These systems are

sometimes called expert systems or knowledge-based systems.
The troubleshooting system described earlier in this chapter uses a rule-based approach.

Rule-based systems work well if you can identify the rules necessary to get the job done. Sometimes,
you can build good rules even for complicated systems; although that can be a lot of work.

Rule-based systems don’t work well it the problem is poorly defined so you can’t igure out what
rules to use. They also have trouble handling unexpected situations.

ROTTEN RULES

For several years | had a tairly odd network connection leading directly to

my phone company’s central othce. One day it didn’t work, so I called tech
support, and the service rep started working through his troubleshooting rules.
Untortunately, the phone company hadn’t ottered my type of service tor several
years, so the rules didn’t cover it.

Eventually, the rep reached a rule that asked me to unplug my modem and reconnect
it. I explained that the modem was in the central othce and that unplugging anything
on my end would also disconnect my phone, The rules didn’t give him any other

options, so he insisted. I unplugged my cable and predictably the phone call dropped.

I called back, got a ditferent rep who was a little better at thinking outside of the rules,
and we discovered (as I had suspected) that the problem was at the central office.

Rule-based systems are great for handling common simple scenarios, but when they encounter
anything unexpected they’re quite useless. For that reason, you should always give the user a way to

handle special situations manually.

Distributed

In a distributed architecture, ditfferent parts of the application run on different processors and may
run at the same time. The processors could be on different computers scattered across the netwmrk,
or they could be different cores on a single computer, (Most modern computers have multiple cores
that can execute code at the same time.)

Service-oriented and multitier architectures are often distributed, with different parts of the system
running on different computers. Component-oriented architectures may also be distributed, with
different components running on different cores on the same computer.

In general, distributed applications can be extremely confusing and hard to debug. For
example, suppose you’re writing an application that sells office supplies such as staples, paper

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

What to Specify | 99

clips, and demotivational posters. You sell to companies that might have several authorized
purchasers.

Now suppose your application uses the following steps to add the cost of a new purchase to a
customer’s outstanding balance:

1. Get customer balance from database.

2. Add new amount to balance.

3. Save new balance in database.
This seems straightforward until you think about what happens if two people make purchases at
almost the same time with a distributed application. Suppose a customer has an outstanding balance

of $100. One purchaser buys $50 worth of sticky notes while another purchaser is buying a $10

trash can labeled “suggestions.” Now suppose the application executes the two purchasers’ steps in
the order shown in Table 5-1.

TABLE 5-1: Office Supply Purchasing Sequence
PURCHASER 1 ~ PURCHASER 2
Get balance. ($100)

Get balance. ($100)
Add to balance. ($150)

Add to balance. ($110)

Save new balance. ($150)

Save new balance. ($110)

In Table 5-1, time increases downward so Purchaser 1 gets the account balance first and then
Purchaser 2 gets the account balance.

Next Purchaser 1 adds $50 to his balance to get $1350, and then Purchaser 2 adds $10 to his balance
to get $110.

Purchaser 1 then saves his new balance of $150 into the database, Finally Purchaser 2 saves his
balance of $110 into the database, writing over the $150-balance that Purchaser 1 just saved. In the

end, instead of holding a balance of $160 ($100 + $50 + $10), the database holds a balance of $110.

In distributed computing, this is called a race condition. The two processes are racing to see which
one saves its balance first. Whichever one saves its balance second “wins.” (Although you lose.)

A distributed architecture can improve performance as long as you don’t run atoul of race
conditions and other potential problems.

Mix and Match

An application doesn’t need to stick with a single architecture. Different pieces of the application
might use diftferent design approaches. For example, you might create a distributed service-oriented

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

100 | CHAPTERS5 HIGH-LEVEL DESIGN

application. Some of the larger services might use a component-based approach to break their code into
decoupled pieces. Other services might use a multitier approach to separate their teatures from the data
storage layer. (Combining different architectures can also sound impressive at cocktail parties. “Yes, we
decided to go with an event-driven multitier approach using rule-based distributed components.™)

CLASSYDRAW ARCHITECTURE

Suppose you want to pick an architecture for the ClassyDraw application described
in Chapter 4. (Recall that this is a drawing program somewhat similar to MS Paint
except it lets you select and manipulate drawing objects.) One way to do that is to
think about each of the standard architectures and decide whether it would make
sense to use while building the program.

1. Monolithic—This is basically the default if none of the more elaborate archi-
tectures apply. We’ll come back to this one later.

2. Client/server, multitier—ClassyDraw stores drawings in files, not a database,
so client/server and multitier architectures aren’t needed. (You could store
drawings in a database if you wanted to, perhaps for an architectural firm
or some other use where there would be some benefit. For a simple drawing
application, it would be overkill.)

3. Component-based—You could think of different pieces of the application as
components providing services to each other. For example, you could think of
a “rectangle component” that draws a rectangle. For this simple application,
it’s probably just as easy to think of a Rectangle class that draws a rectangle,
so I'm not going to think of this as a component-based approach.

4. Service-oriented—This is even less applicable than the component-based approach.
Spreading the application across multiple computers connected via web services
(or some other kind of service) wouldn’t help a simple drawing application.

5. Data-centric—The user defines the drawings, so there’s no data around which
to organize the program. (Although a more specialized program, perhaps a
dratting program for an architectural irm or an aerospace design program,
might interact with data in a meaningtul way.)

6. Event-driven—The user interface will be event-driven. For example, the user
selects a tool and then clicks and drags to create a new shape.

/. Rule-based—There are no rules that the user must follow to make a drawing,
so this program isn’t rule-based.

8. Distributed—This program doesn’t perform extensive calculations, so distrib-
uting pieces across multiple CPUs or cores probably wouldn’t help.

Because none of the more exotic architectures applied (such as multitier or service-
oriented), this application can have a simple monolithic architecture with an event-
driven user interface.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

What to Specify | 101

Reports

Almost any nontrivial software project can use some kinds of reports. Business applications might
include reports that deal with customers (who’s buying, who has unpaid bills, where customers
live), products (inventory, pricing, what’s selling well), and users (which employees are selling a lot,
employee work schedules).

Even relatively simple applications can sometimes benefit from reports. For example, suppose you’re
writing a simple shareware game that users will download from the Internet and install on their
phones. The users won’t want reports (except perhaps a list of their high scores), but you may want to
add some reporting. You could make the game upload information such as where the users are, when
they use the game, how often they play, what parts of the game take a long time, and so forth. You
can then use that data to generate reports to help you refine the game and improve your marketing,.

AD HOC REPORTING

A large application might have dozens or even hundreds of reports. Often
customers can give you lists of existing reports that they use now and that they
want in the new system. They may also think of some new reports that take
advantage of the new system’s features.

However, as development progresses, customers inevitably think of more reports as
they learn more about the system. They’ll probably even think of extra reports atter
you've completely hnished development.

Adding dozens of new reports throughout the development cycle can be a burden to
the developers. One way to reduce report proliferation is to forbid it. Just don’t allow
the customers to request new reports. Or you could allow new reports but require that
they go through some sort of approval process so you don’t get too many requests.

Another approach is to allow the users to create their own reports. It the
application uses a SQL database, it’s not too hard to buy or build a reporting tool
that lets users type in queries and see the results. I've worked on projects where the
customers used this capability to design dozens of new reports without creating
extra work tor the developers.

If you use this technique, however, you may need to restrict access to it so the
users don’t see confidential data. For example, a typical order entry clerk probably
shouldn’t be able to generate a list of employee salaries.

Some SQL statements can also damage the database. For example, the SQL DroP
TABLE statement can remove a table from the database, destroying all its data.
Make sure the ad hoc reporting tool is only usable by trusted users or that it won’
allow those kinds of dangerous commands.

As is the case with high-level user interface design, you don’t need to specify every detail for every
report here. Try to decide which reports you’ll need and leave the details for low-level design and
implementation.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

102 | CHAPTERS HIGH-LEVEL DESIGN

Other Outputs

In addition to normal reports, you should consider other kinds of outputs that the application might
create. The application could generate printouts (of reports and other things), web pages, data files,
image files, audio (to speakers or to audio files), video, output to special devices (such as electronic
signs), e-mail, or text messages (which is as easy as sending an e-mail to the right address). It could
even send messages to pagers, if you can find any that aren’t in museums yet.

TIP Text (or pager) messages are a good way to tell operators that something
is going wrong with the application. For example, if an order processing
application is stuck and jobs are piling up in a queue, the application can send a
message to a manager, who can then try to figure out what's wrong.

Database

Database design is an important part of most applications. The first part of database design is to
decide what kind of database the program will need. You need to specify whether the application
will store data in text files, XML files, a full-fledged relational database, or something more exotic
such as a temporal database or object store. Even a program that doesn’ use any database still needs
to store data, perhaps inside the program within arrays, lists, or some other data structure.

If you decide to use an external database (in other words, more than data that’s built into the code),
vou should specify the database product that you will use. Many applications store their data
in relational databases such as Access, SQL Server, Oracle, or MySQL. (There are dozens if not

hundreds of others.)

If you use a relational database, you can sketch out the tables it contains and their relationships
during high-level design. Later you can provide more details such as the specific fields in each table
and the fields that make up the keys linking the tables.

DEFINING CLASSES

Otten the tables in the database correspond to classes that you need to build in the
code. At this point, it makes sense to write down any important classes you dehne.
Those might include tairly obvious classes such as Employee, Customer, Order,
WorkAssignment, and Report.

You’ll have a chance to refine those classes and add others during low-level design
and implementation. For example, you might create subclasses that add refnement
to the basic high-level classes. You could create subclasses of the Customer class

such as PreferredCustomer, CorporateCustomer, and Impul seBuver.

Use good database design practices to ensure that the database is properly normalized. Database
design and normalization is too big a topic to cover in this book. (For an introduction to
database design, see my book Beginning Database Design Solutions, Wiley, 2008.) Although

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

What to Specify | 103

I don’t have room to cover those topics in depth, I’ll say more about normalization in the
next chapter.

Meanwhile there are three common database-specific issues that you should address during high-
level design: audirt trails, user access, and database maintenance.

Audit Trails

An audit trail keeps track of each user who modihes (and in some applications views) a specihc
record. Later, management can use the audit trails to see which employee gave a customer a 120-
percent discount. Auditing can be as simple as creating a history table that records a user’s name,
a link to the record that was modified, and the date when the change occurred. Some database
products can even create audit trails for you.

A fancier version might store copies of the original data in each table when its data is modihed.

For example, suppose a user changes a customer’s billing data to show the customer paid in full.
Instead ot updating the customer’s record, the program would mark the existing (unpaid) record as
outdated. It would then copy the old record, update it to show the customer’s new balance, and add
the date ot the change and the user’s name. Some applications also provide space tor the users to add
a note explaining why they gave the customer a $12,000-credit on the purchase of a box of cereal.

Later, you can compare the customer’s records over time to build an audit trail that re-creates the
exact sequence of changes made tor that customer. (Of course, that means you need to add a way tor
the application to display the audit trail, and that means more work.)

NOTE Socme businesses have rules or government regulations that require
them to delete old data including audit trails.

Many applications don’t need auditing. If you write an online multiplayer rock-paper-scissors game,
you probably don’t need an extensive record of who picked paper in a match two months ago.

You also may not need to add auditing to programs written for internal company use, and other
programs that don’t involve money, confidential records, or other data that might be tempting to
misuse. In cases like those, you can simplity the application by skipping audit trails.

User Access

Many applications also need to provide different levels of access to different kinds of data. For
example, a fulfillment clerk (who throws porcelain dishes into a crate for shipping) probably doesn’t
need to see the customer’s billing information, and only managers need to see the other employees’
salary information.

One way to handle user access is to build a table listing the users and the privileges they should be
given. T he program can then disable or remove the buttons and menu items that a particular user
shouldn’t be allowed to use.

Many databases can also restrict access to tables or even specific columns in tables. For example,
vou might be able to allow all users to view the Name, 0ffice, and PhoneNumber fields in the
Emplovees table without letting them see the salary field.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

104 | CHAPTERS5 HIGH-LEVEL DESIGN

Database Maintenance

A database is like a hall closet: Over time it gets disorganized and tull of random junk like string,
chipped vases, and unmatched socks. Every now and then, you need to reorganize so that you can
find things ethciently.

If you use audit trails and the records require a lot of changes, the database will start to fill up with
old versions of records that have been modified. Even if you don’ use audit trails, over time the
database can become cluttered with outdated records. You probably don’t need to keep the records
of a customer’s gum purchase three years ago.

In that case, you may want to move some of the older data to long-term storage to keep the main
database lean and responsive. Depending on the application, you may also need to design a way to
retrieve the old data if you decide you want it back later.

You can move the older data into a data warebouse, a secondary database that holds older data for
analysis. In some applications, you may want to analyze the data and store modified or aggregated
torms in the warehouse instead of keeping every outdated record.

You may even want to discard the old data it you’re sure you’ll never need it again.

Removing old data trom a database can help keep it responsive, but a lot of changes to the data
can make the database’s indexes inethcient and that can hurt pertormance. For that reason, you
may need to periodically re-index key tables or run database tuning software to restore peak
performance. In large, high-reliability applications, you might need to perform these sorts of tasks
during oft-peak hours such as between midnight and 2 a.m.

Finally, you should design a database backup and recovery scheme. In a low-priority application,
that might involve copying a data hle to a DVD every now and then. More typically, it means
copying the database every night and saving the copy tor a tew days or a week. For high-reliability
systems, it may mean buying a special-purpose database that automatically shadows every change
made to any database record on multiple computers. (One telephone company project I worked on
even required the computers to be in ditterent locations so that they wouldn’t all tail it a computer
room was flooded or wiped out by a tornado.)

These kinds of database maintenance activities don’t necessarily require programming, but they’re
all part of the price you pay for using big databases, so you need to plan for them.

Configuration Data

I mentioned earlier that you can save yourself a lot of time if you let users define their own ad hoc
queries. Similarly, you can reduce your workload if you provide configuration screens so that users
can fine-tune the application without making you write new code. Store parameters to algorithms,
key amounts, and important durations in the database or in configuration files.

For example, suppose your application generates late payment notices it a customer has owed at
least $50 for more than 30 days. If you make the values $50 and 30 days part of the configuration,
vou won’t need to change the code when the company decides to allow a 5-day grace period and
start pestering customers only after 35 days.

Make sure that only the right users can modity the parameters. In many applications, only
managers should change these values.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

UML | 105

Data Flows and States

Many applications use data that flows among different processes.
For example, a customer order might start in an Order Creation Customer —{ g:’: }
process, move to Order Assembly (where items are gathered for
shipping), and then go to Shipping (for actual shipment). Data
may flow from Shipping to a final Billing process that sends an
: ; . . . Assembie
invoice to the customer via e-mail. Figure 5-5 shows one way [Order }
vou might diagram this data flow.
You can also think of a piece of data such as a customer order
as moving through a sequence of states. The states often [Eh'F’ }
correspond to the processes in the related data flow. For this Deeler
example, a customer order might move through the states
Created, Assembled, Shipped, and Billed.

Send
Not all data flows and state transitions are as simple as this Invoice }

one. Sometimes events can make the data take ditterent paths

through the system. Figure 5-6 shows a state transition diagram FIGURE 5-5: A data flow
diagram shows how data such as

a customer order flows through
various processes.

tor a customer order. The rounded rectangles represent states.
Text next to the arrows indicates events that drive transitions,
For example, it the customer hasn’t paid an invoice 30 days
after the order enters the Billed state, the system sends a
second invoice to the customer and moves the order to the
late state.

These kinds of diagrams help describe the system and the way processes interact with the data.

Training

Although it may not be time to start writing training materials, it’s never too early to think about
them. The details of the system will probably change a lot between high-level design and final
installation, but you can at least think about how you want training to work. You can decide
whether you want users to attend courses taught by instructors, read printed manuals, watch

instructional videos, or browse documentation online.

Trainers may create content that discusses the application’s high-level purpose, but you have to hll in

most of the details later as the project develops.

UML

As mentioned in Chapter 4, “Requirement Gathering,” the Unified Modeling Language (UML) isn’t
actually a single unified language. Instead it defines several kinds of diagrams that you can use to

represent different pieces of the system.

The Object Management Group (OMG, yes, as in “OMG how did they get such an
awesome acronym before anyone else got it?”) is an international not-for-profit organization

that defines modeling standards including UML. (You can learn more about OMG and UML at

www . uml . org.)

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

106 | CHAPTERS5 HIGH-LEVEL DESIGN

Customer

creates order
{ Created J

Customer revises
order

Fullfillment clerk
assembles

[Assembled J

l Mailroom ships

()
(

Invaice

l Program e-mails

Billed

If unpaid after 30 days,

Customer pays program sends second
Invoice

Paid j (Late j

Customer pays

If unpaid after 60 days,
program sends e-mail
begging and pleading

[Delinquent J

If unpaid after 20 days,
write off and close
customer account

[e]

FIGURE 5-6: A data flow diagram shows how data such as a customer
order flows through various processes.

Customer pays

UML 2.0 defines 13 diagram types divided into three categories (and one subcategory) as shown in
the following list:

> Diagram
» Structure Diagram
» (Class Diagram
» Composite Structure Diagram
» Component Diagram
>

Deployment Diagram

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

umL | 107

» Object Diagram
» Package Diagram
» Profile Diagram
> Behavior Diagram
» Activity Diagram
» Use Case Diagram

» State Machine Diagram

» Interaction Diagram
» Sequence Diagram
-

Communication Diagram
» Interaction Overview Diagram
» Timing Diagram

Many ot these are rather complicated so | won’t describe them all in excruciating detail here. Instead
the tollowing sections give overviews of the types ot diagrams in each category and provide a bit
more detail about some ot the most commonly used diagrams.

Structure Diagrams

A structure diagram describes things that will be in the system you are designing. For example,
the class diagram (one type of structure diagram) shows relationships among the classes that
will represent objects in the system such as inventory items, vehicles, expense reports, and cottee
requisition forms.

OBJECTS AND CLASSES

I’ll say a bit more about classes and class diagrams shortly, but briefly a class
defines a type (or class) of items, and an object is an instance of the class. Often
classes and objects correspond closely to real-world objects.

For example, a program might define a Student class to represent students. The class
would define properties that all students share such as Name, Grade, and HomeRoom.

A specific instance of the Student class would be an object that represents a
particular student, such as Rufus T. Firefly. For that object, the Name property would
be set to “Rufus T. Firefly,” Grade might be 12, and HomeRoom might be “11-B.”

The following list summarizes UML’s structure diagrams:

> (Class Diagram—Describes the classes that make up the system, their properties and methods,

and their relationships.

> Object Diagram—Focuses on a particular set of objects and their relationships at a specific time.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

108 | CHAPTERS5 HIGH-LEVEL DESIGN

» Component Diagram—Shows how components are combined to torm larger parts of the

system.

» Composite Structure Diagram—Shows a class’s internal structure and the collaborations that

thﬁ CIEISS EIHEJWS.

» Package Diagram—Describes relationships among the packages that make up a system. For
example, if one package in the system uses features provided by another package, then the

diagram would show the first “importing” the second.

> Deployment Diagram—Describes the deployment of artifacts (files, scripts, executables, and
the like) on nodes (hardware devices or execution environments that can execute artifacts).

The most basic of the structure diagrams is the class diagram. In a

class diagram, a class is represented by a rectangle. The class’s name Student
goes at the top, is centered, and is in bold. Two sections below the Name: string
name give the class™ properties and methods. (A method is a routine Grade: integer

that makes an object do something. For example, the student class HomeRoom: string

migllt haVE‘ a Dolss lgnment !.T].E'thDd th;.-'l'f mai{ES I}lE Student DbjEC'E DDASEEgHmEHT[’EitEE striﬂg}

work through a specific class assignment.) Figure 5-7 shows a simple

diﬂgfﬂm f'DI' thE Student ClHSS. FIGURE 5-7: A class diagram
describes the properties

Some people add annotations to class representations to give vou more
REOH = P = Y and methods of classes.

detail. Most class diagrams include the data types of properties and
parameters passed into methods, as shown in Figure 5-7. You can also add the symbols shown in
Table 5-2 to the left of a class member to show its visibility within the project.

TABLE 5-2: Class Diagram Visibility Symbols

SYMBOL MEANING EXPLANATION
+ Public The member is visible to all code in the application.
- Private The member is visible only to code inside the class.
Protected The member is visible only to code inside the class and any

derived classes.

- Package The member is visible only to code inside the same package.

Class diagrﬂms also often show relari:::nahips among classes. Lines connect classes that are related
to each other. A variety of line styles, symbols, arrowheads, and annotations give more information

about the kinds of relationships.

The simplest way to use relationships is to draw an arrow indicating the direction ot the relationship
and label the arrow with the relationship’s name. For example, in a school registration application,
yvou might draw an arrow from the student class to the Course class to indicate that a Student is
associated with the Courses that student is taking. You could label that arrow “is taking.”

At the line’s endpoints, you can add symbols to indicate how many objects are involved in the
relationship. Table 5-3 shows symbols you can add to the ends of a relationship.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

UML | 109

TABLE 5-3: Class Diagram Multiplicity Indicators

SYMBOLS MEANING
1 Exactly 1
0..1 0or1
£ Any number (0 or more)

Any number (0 or more)

1t 1 or more

The class diagram in Figure 5-8 shows the “is taking” relationship between the Student and Course
classes. In that relationship, 1 Student object corresponds to 1 or more Course objects.

Student Course
Name: string 1 istaking 1..* Name: string
Grade: integer »| Room: string

HomeRoom: string

EmailAssignment(title: string)

DoAssignment(title: string)

FIGURE 5-8: The relationship in this class diagram indicates that 1 Student takes
1 or more Courses.

Another important type of class diagram relationship is inheritance. In object-oriented
programming, one class can inherit the properties and methods of another. For example, an honors
student is a type of student. To model that in an object-oriented program, you could define an
HonorsStudent class that inherits from the student class. The HonorsStudent class automatically
gets any properties and methods defined l‘r}’ the Student class (Name, Grade, HomeRoom, and
DoAssignment). You can also add new properties and methods if you like. Perhaps you want to add
a GPA property to the HonorsStudent class.

In a class diagram, you indicate inheritance by using a hollow arrowhead pointing from the child class
to the parent class. Figure 5-9 shows that the HonorsStudent class inherits from the student class.

Class diagrams for complicated applications can become cluttered and hard to read if you put
everything in a single huge diagram. To reduce clutter, developers often draw multiple class

diagrams showing parts of the system. In particular, they often make separate diagrams to show
inheritance and other relationships.

For information about more elaborate types of class diagrams, search the Internet in general or the
OMG website www.omg.org in particular.

Behavior Diagrams

UML defines three kinds of basic bebavior diagrams: activity diagrams, use case diagrams, and
state machine diagrams. The following sections provide brief descriptions of these kinds of diagrams
and give a few simple examples.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

110 | CHAPTERS5 HIGH-LEVEL DESIGN

Student Course
Name: string 1 istaking 1.* | Name:string
Grade: integer » Room: string

HomeRoom: string

EmailAssignment(title: string)

DoAssignment(title: string)

AN

HonorsStudent

GPA: double

FIGURE 5-9: A class diagram indicates inheritance with a hollow arrowhead.

Activity Diagrams

An activity diagram represents work flows for activities. They include several kinds of symbols
connected with arrows to show the direction of the work flow. Table 5-4 summarizes the symbols.

TABLE 5-4: Activity Diagram Symbols

SYMBOL REPRESENTS

Rounded rectangle An action or task

Diamond A decision

Thick bar The start or end of concurrent activities
Black circle The start

Circled black circle The end

Figure 5-10 shows a simple activity diagram for baking cookies.

The first thick bar starts three parallel activities: Start oven, mix dry ingredients, and mix wet
ingredients. If you have assistant cookie chefs (perhaps your children, if you have any), those steps
can all proceed at the same time in parallel.

When the three parallel activities all are done, the work tlow resumes after the second thick bar. The
next step is to combine all the ingredients.

A test then checks the batter’s consistency. It the batter is too sticky, you add more flour and recheck
the consistency. You repeat that loop until the batter has the right consistency.

When the batter is just right, you roll out the cookies, wait until the oven is ready (if it isn’t already),
and bake the cookies for eight minutes.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

UML | 111

(Start oven) (Mix dry ingredients) (I"'-.-"'Iix wet ingredientﬁ]

(Cﬂmbine ingredients‘)
<+

Batter too sticky
é D(Add more flﬂua

Batter okay

(Rnll cut'ccml-cies)

h 4
(_Wa'st until oven is ready)

(Bake B:’l'mu’EEE)

Cookies not done

D{ Bake 1 minute)

Cockies done

FIGURE 5-10: An activity diagram is a bit like a flowchart showing
how work flows.

After eight minutes, you check the cookies. If the cookies aren’t done, you bake them for one more
minute. You continue checking and baking for one more minute as long as the cookies are not done.

When the cookies are done, you enter the stopping state indicated by the circled black circle.

Use Case Diagram

A use case diagram represents a user’s interaction with the system. Use case diagrams show stick higures
representing actors (someone or something that performs a task) connected to tasks represented by ellipses.

To provide more detail, you can use arrows to join subtasks to tasks. Use the annotation
<<include>> to mean the task includes the subtask. (It can’t take place without the subtask.)

If a subtask might occur only under some circumstances, connect it to the main task and add the
annotation <<extends>. It you like, you can add a note indicating when the extension occurs.
{Usuﬂlly both <<includes> and <<extends> arrows are dashed.)

Figure 5-11 shows a simple online shopping use case diagram. The customer actor performs the
“Search site tor products™ activity. If he finds something he likes, he also performs the “Buy
products” extension. To buy products, the customer must log in to the site, so the “Buy products”
activity includes the “Log on to site™ activity.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

112 | CHAPTERS HIGH-LEVEL DESIGN

Shop online

Search site for

oroducts <<include>=

Find matching
products

Buy products

Search engine

Customer v <<include>=

Y
*

Leg on to site

FIGURE 5-11: A use case diagram shows actors and the tasks they perform
(possibly with subtasks and extensions).

The website’s search engine also participates in the “Search site tor products™ activity. When the customer
starts a search, the engine performs the “Find matching products™ activity. The “Search™ activity cannot
work without the “Find™ activity, so the “Find” activity is included in the “Search™ activity.

State Machine Diagram

A state machine diagram shows the states through which an object passes in response to various
events. States are represented by rounded rectangles. Arrows indicate transitions from one state to
another. Sometimes annotations on the arrows indicate what causes a transition.

A black circle represents the starting state and a circled black circle indicates the stopping state.

Figure 5-12 shows a simple state machine diagram for a program that reads a floating point number

(as in —17.32) followed by the Enter key.

Digit Decimal i Enter
J Digit or decimﬂﬁ Dlglt.ﬂ&er]
J decimal J
o W, ‘\/ U
Digit before hgit 2l
decimal

FIGURE 5-12: This state machine diagram represents reading a floating point
number.

The program starts and can read a digit, +, or —. (If it reads any other character, the machine tails
and the program would need to take some action, such as displaying an error message.) If it reads a
+, or —, the machine moves to the state “Digit before decimal.”

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

UML | 113

From that state, the user must enter a digit, at which point the machine moves into state
“Digit or decimal.” The machine also reaches this state if the user initially enters a digit instead of

a +, or —

Now if the user enters another digit, the machine remains in the “Digit or decimal” state. When the
user enters a decimal point, it moves to the “Digit after decimal” state. If the user presses the Enter
lkey, the machine moves to its stopping state. (That happens if the user enters a whole number such

as 37.)

The machine remains in the “Digit after decimal” state as long as the user types a digit. When the
user presses the Enter key, the machine moves to its stopping state.

Interaction Diagrams

Interaction diagrams are a subset of activity diagrams. They include sequence diagrams,
communication diagrams, timing diagrams, and interaction overview diagrams. The tollowing
sections provide brief descriptions of these kinds of diagrams and give a few simple examples.

Sequence Diagram

A sequence diagram shows how objects collaborate in a particular scenario. It represents the
collaboration as a sequence of messages.

Objects participating in the collaboration are represented as rectangles or sometimes as stick hgures
tor actors. They are labeled with a name or class. If the label includes both a name and class, they
are separated by a colon.

Below each of the participants is a vertical dashed line called a lifeline. The liteline basically
represents the participant sitting there waiting tor something to happen.

An execution specification (called an execution or intormally an activation) represents a participant
doing something. In the diagram, these are represented as gray or white rectangles drawn on top of
the liteline. You can draw overlapping rectangles to represent overlapping executions.

Labeled arrows with solid arrowheads represent synchronous messages. Arrows with open
arrowheads represent asynchronous messages. Finally, dashed arrows with open arrowheads
represent return messages sent in reply to a calling message.

Figure 5-13 shows a customer, a clerk, and the Movie class interacting to print a ticket for a movie,
The customer walks up to the ticket window and requests the movie from the clerk. The clerk uses a
computer to ask the Movie class whether tickets are available for the desired show. The Movie class
responds.

Notice that the Movie class’s response is asynchronous. The class fires oft a response and doesn’t
wait for any kind of reply. Instead it goes back to twiddling its electronic thumbs, waiting for some
other request.

If the class’s response is false, the interaction ends. (This scenario covers only the customer
successfully buying a ticket.) If the response is true, control returns to the clerk, who uses the
computer to ask the Movie class to select a seat. This causes another execution to run on the Movie
class’s lifeline.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

114 | CHAPTERS5 HIGH-LEVEL DESIGN

: Movie
Customer Clerk
| | !
| | I
requestimovie) I |
| |
isAvailable(movie) :
true
e R SN ,
selectSeatimovie) |
selectSeat(movie)
seat
___________ B _____________h
ticket
e |
|
ticket |
< | |
|
|

FIGURE 5-13: A sequence diagram shows the timing ot
messages between collaborating objects.

The Movie class in turn asks the customer to pick a seat from those that are available. The customer
15 still waiting for the initial request to finish, so this is an overlapping execution for the customer.

After the customer picks a seat, the Movie class issues a ticket to the clerk. The clerk then prints the
ticket and hands it to the customer.

The point of this diagram is to show the interactions that occur between the participants and
the order in which they occur. If you think the diagram is confusing, feel free to add some text
describing the process.

Communication Diagram

Like a sequence diagram, a communication diagram shows communication among objects during
some sort of collaboration. The difference is the sequence diagram focuses on the sequence

of messages, but the communication diagram focuses more on the objects involved in the
collaboration.

The diagram uses lines to connect objects that collaborate during an interaction. Labeled arrows

indicate messages between objects. The messages are numbered that so you can follow the sequence
ol messages.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

UML | 115

Figure 5-14 shows a communication diagram for the movie ticket buying-scenario that was shown

in Figure 5-13.

Clerk

Moaovie

1.2.1 selectSeatimovie)

Customer

FIGURE 5-14: A communication diagram emphasizes the objects participating in a
collaboration.

Following is the sequence of messages in Figure 5-14:
1: The customer asks the clerk for a movie ticket.
11: The clerk asks the Movie class if a seat is available.
1.2 The clerk asks the Movie class to select a seat.
1.2.1: The Movie class asks the user to pick a seat.
1.2.2: The Movie class sends the clerk a ticket for the selected seat.
1.3: The clerk prints the ticket and hands it to the customer.

The exact timing of the messages and some of the details (such as return messages) are not
represented well in the communication diagram. Those details are better represented by a sequence

diagram.

Timing Diagram
A timing diagram shows one or more objects’ changes in state over time. A timing diagram looks

a lot like a sequence diagram turned sideways, so time increases from left to right. These diagrams
can be usetul for giving a sense of how long different parts of a scenario will take.

More elaborate versions of the timing diagram show multiple participants stacked above each other

with arrows showing how messages pass between the participants.

Interaction Overview Diagram

An interaction overview diagram is basically an activity diagram where the nodes can be frames
that contain other kinds of diagrams. Those nodes can contain sequence, communication, timing,
and other interaction overview diagrams. This lets you show more detail for nodes that represent

c:::mplicated tasks.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

116 | CHAPTERS HIGH-LEVEL DESIGN

SUMMARY

High-level design sets the stage tor later sottware development. It deals with the grand decisions
such as:

» What hardware platform will you use?

> What type of database will you use?

» What other systems will interact with this one?
>

W}].E'l[reports can you 1'I'1Eil'{E thﬁ‘ LSErSs dﬁﬁﬂﬁ‘ 50 VOu d'i:lﬂ}t }'LEI.VE o dD ﬂil tilE Vv'ﬂl'k?

After you settle these and other high-level questions, the stage is set for development. However,
vou’re still not quite ready to start slapping together code to implement the teatures described in

the requirements. Before you start churning out code, you need to create low-level designs to tlesh
out the classes, modules, interfaces, and other pieces of the application that you identihed during
high-level design. The low-level design will give you a detailed picture of exactly what code you need
to write so you can begin programming.

The next chapter covers low-level design. It explains how you can refine the database design to
ensure the database is robust and flexible. It also describes the kinds of information you need to add
to the high-level design before you can start putting Os and 1s together to make the final program.

EXERCISES

1.

~

® N o

What's the difference between a component-based architecture and a service-oriented
architecture?

Suppose you're building a phone application that lets you play tic-tac-toe against a simple
computer opponent. It will display high scores stored on the phone, not in an external data-
base. Which architectures would be most appropriate and why?

Repeat question 2 for a chess program running on a desktop, laptop, or tablet computer.

Repeat question 3 assuming the chess program lets two users play against each other over an
Internet connection.

What kinds of reports would the game programs described in Exercises 2, 3, and 4 require?
What kind of database structure and maintenance should the ClassyDraw application use?
What kind of configuration information should the ClassyDraw application use?

Draw a state machine diagram to let a program read floating point numbers in scientific

notation as in + 37 or —12.3e + 17 (which means —12.3 X 10%"). Allow both E and e for the
exponent symbol.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Summary | 117

» WHAT YOU LEARNED IN THIS CHAPTER

>

High-level design is the first step in breaking an application into pieces that are small enough

to implement.

Decoupling tasks allows different teams to work on them simultaneously.

Some of the things you should specity in a high-level design include:

>

\J

Y ¥y Y Y

\J

>

>

Security (operating system, application, data, network, and physical)

Operating system (Windows, 108§, or Linux)

Hardware platform (desktop, laptop, tablet, phone, or mainframe)

Other hardware (networks, printers, programmable signs, pagers, audio, or video)
User interface style (navigational techniques, menus, screens, or forms)

[nternal intertaces

External interfaces

Architecture (monolithic, client-server, multitier, component-based, service-oriented,
data-centric, event driven, rule-based, or distributed)

Reports (application usage, customer purchases, inventory, work schedules, produc-
tivity, or ad hoc)

Other outputs (printouts, web pages, data files, images, audio, video, e-mail, or text
Messages)

Database (database platform, major tables and their relationships, auditing, user
access, maintenance, backup, and data warehousing)

TDp—lEvEl classes (Customer, Emplovee, and Order)

Confguration data (algorithm parameters, due dates, expiration dates, and
durations)

Data flows

Training

UML diagrams lets you specify the objects in the system (including external agents such as

users and external systems) and how they interact.

The main categories of UML diagrams are structure diagrams and behavior diagrams (which

includes the subcategory interaction diagrams).

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Low-Level Design

We try to solve the problem by rushing through the design process so that
enough time is left at the end of the project to uncover the errors that were

made because we rushed through the design process.

— G LENFORD MYERS

WHAT YOU WILL LEARN IN THIS CHAPTER:

> How to use generalization and refinement to build inheritance
hierarchies

Warning signs of bad inheritance hierarchies
How to use composition to build new classes without inheritance

How normalization protects databases from anomalies

Y ¥y v Y%

Rules for first, second, and third normal forms

High-level design paints an application’s structure in broad strokes. It identifies the system’s
general environment (hardware, operating system, network, and so on) and architecture (such
as monolithic, client/server, and service-oriented). It identifies the system’s major components
such as reporting modules, databases, and top-level classes. It should also sketch out how the
pieces of the system will interact.

Low-level design hlls in some of the gaps to provide extra detail that’s necessary betore
developers can start writing code. It gives more specific guidance tor how the parts of the
system will work and how they will work together. It refines the dehnitions ot the database,
the major classes, and the internal and external intertaces.

High-level design focuses on what. Low-level design begins to tocus on how.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

120 | CHAPTER & LOW-LEVEL DESIGN

As an analogy, if you were building a highway system, high-level design would determine what
cities (and perhaps what parts of those cities) would be connected by highways. The low-level design
would indicate exactly where the highways would be placed, where the ramps would be, and what
elementary schools would be surrounded by four-lane traffic circles.

The border between high-level and low-level design is often rather fuzzy. Typically, after a piece

of the system is added to the high-level design, team members continue working on that piece to
develop its low-level design. Particularly on a large project, some people will be working on high-
level designs while others work on low-level designs. Developers may even start implementing parts
of the system that have been adequately defined.

In a way, you can describe low-level design as high-level design for micro-managers. You extend the
high-level design by providing more and more detail until everything is specified precisely enough to
start implementation.

However, refining a high-level design isn’t necessarily easy. You may know generally what you
need in the database (customer data and stutt), but unless you rehine that knowledge into a good
detailed database design, you may run into all sorts of problems later. The data may become
inconsistent, the program might lose critical information, and hnding data may be slow. Ditferent
database designs can make the ditterence between hnding the data you need in seconds, hours, or
not at all.

The tollowing sections describe some of the most important concepts you should keep in mind
during low-level design. They explain how to rehne an object model to identity the application’
classes, how to use stepwise refinement to provide additional detail tor a task, and how to design a
database that is tlexible and robust.

OO DESIGN

The high-level design should have identified the major types of classes that the application will use.
Now it’s time to refine that design to identity the specific classes that program will need. The new
classes should include dehnitions of the properties, methods, and events they will provide tor the
application to use.

A QUICK OO PRIMER

In object-oriented (OQ) development, classes define the general properties and
behaviors for a set of objects. An instance of a class is an object with the class’s

type.

For example, you could define an Buthor class to represent authors. An instance
of the class might represent the specific author William Shakespeare. After you
define the 2uthor class, you could create any number of instances of that class to
represent different authors.

Classes define three main items: properties, methods, and events.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

OO Design

121

A property is something that helps dehine an object. For example, the Author class
might have FirstName and LastName properties to identify the specific author

an instance represents. It might have other properties such as Date0fBirth,
DateOfDeath, and WrittenWorks.

A method is a piece of code that makes an object do something. The Author class
might have a Search method that searches an object’s WrittenWorks values for a work
that contains a certain word. It might also have methods to print a formatted list of
the author’s works, or to search online for places to buy one of the author’ works.

An event is something that occurs to tell the program that something interesting
has hﬂppened. An c-bjﬁct raises an event when appropriate to let the program

take some action. For example, an Author object might raise a Birthday event

to tell the program that today is the author’s birthday. (That would be hard tor
Shakespeare because no one knows exactly he was born.) When the program
creates an Author object, that object would raise the Birthday event if it were the
author’s birthday. It would also raise that event if the object already existed and the
clock ticked over past midnight so that it became the author’s birthday.

Atter you design a class, you can use it like a cookie cutter to make as many
instances of the class as you like. Each instance has the same properties, methods,
and events; although, the properties can have ditferent values in ditterent instances.

Object-oriented development involves lots of other details, but this should be
enough to get yvou through the tollowing discussion. If you want more information
about object-oriented programming, look tor a book on the subject, either in
general or tor your tavorite programming language.

Also look for books on design patterns. An object-oriented design pattern is an
arrangement of classes that performs some common and useful task. For example,
the model-view-controller (MVC) pattern breaks a user interface interaction into
three pieces: a model object that represents some data, view objects that display a
view of the data to the user, and controller objects that control the model, possibly
allowing the user to manipulate the data. Design patterns can be useful in designing
the classes that make up an application, but they’re outside the scope of this book.

The tollowing sections explain how you can dehne the classes that an application will use.

|dentifying Classes

the application’s features.

destination.” That sentence contains three nouns: program, car, and destination.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

The previous chapter tells you that you should identify the main classes that the application will use,
but it doesn’t tell you how to do that. One way to pick classes is to look for nouns in a description of

For example, suppose you’re writing an application called FreeWheeler Automatic Driver (FAD) that
automatically drives cars. Now consider the sentence, “The program drives the car to the selected

122 | CHAPTERé& LOW-LEVEL DESIGN

The program probably doesn’t need to directly manipulate itselt, so it’s unlikely that you’ll need a
vrogram class. [t will almost certainly need to work with cars and destinations, so you probably do

need Car and Destination classes.

When you’re studying possible classes, think about what sorts of information the class needs
(properties), what sorts of things it needs to do (methods), and whether it needs to notify the
program of changing circumstances (events). For this example, the var class is going to be fully
loaded, providing all sorts of properties (such as CurrentSpeed, CurrentDirection, and
FuelLevel), methods {SLlCl‘l as Accelerate, Decelerate, ActivateTurnSignal, and HonkHorn), and

events (Such as DriverPressedStart, FuelLevel Low, and CollisionImminent).

The Destination class is probably a lot simpler because it basically just represents a specific
location. In fact, it may be that the application needs only a single instance of this class to record the
current destination.

Making only a single instance of a class is a warning sign that perhaps the class isn’t necessary.
The tact that the Destination class doesn’t do anything or change on its own (so it doesn’t
provide methods or events) is another indication that you might not need that class. In this
example, you could store the destination intormation in a couple variables holding latitude and
longitude.

Note that the class dehnitions depend heavily on how you will use the objects. For example, you
could define a passenger class to represent people riding in the car. A passenger has all sorts of
interesting information such as Name, Address, Age, and CreditScore. However, the FreeWheeler
program doesn’t need to know any of that information. It might not even need to know it the car
contains any passengers. (Although it probably needs to have a driver, at least until automated cars
become so good they can travel on their own.)

Building Inheritance Hierarchies

Atter you dehine the application’s main classes, you need to add more detail to represent variations
on those classes. For example, FreeWheeler is going to need a car class to represent the vehicle it’s
driving, but ditferent vehicles have ditterent characteristics. A 106-horsepower Toyota Yaris handles
ditterently than a 460-horsepower Chevrolet Corvette. It would be bad if the program told the Yaris
to pull out in front of a speeding tractor trailer, assuming it could go from 0 to 60 miles per hour in
3.7 seconds.

You can capture the differences between related classes by deriving a child class trom a parent class.
In this example, you might derive the Yaris and corvette child classes from the car parent class.

Child classes automatically inherit the properties, methods, and events defined by the parent

class. For E}:ﬂmple, the car class might define methods such as SetParkingBrake, TurnLett, and
DeployDragChute. Because Corvette inherits from the car class, a torvette object automatically
knows how to perform those methods.

This is one important way object-oriented programming languages achieve code reuse. You write
code once in the parent class and any child classes use that same code without you rewriting it.

The fact that corvette inherits from tar also means that a torvette is a kind of car. Intuitively,
that makes sense. In real life, a Corvette is a car, so it should do anything that any other car can do.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

OO Design | 123

Because an instance of a child class also belongs to the parent class, the program should be able to
treat the object as it it were of the parent class it that would be helptul. In this example, that means
a program should be able to treat a Corvette object as either a Corvette or as a more generic

car. For instance, the program could create an array of car objects and fill it with instances of the
Corwvette, Yaris, VolkswagenBeatle, Oor DelLorean classes. The program should be able to treat all
those objects as if they were cars without knowing their true classes. The capability to treat objects
as if they were actually trom a ditterent class is called polymorphism.

You can derive multiple classes from a single parent class. For example, you could derive corvette,
Edsel, and Pinto all from the car class.

Conversely, most object-oriented programming languages do not allow multiple inberitance, so a
class can have at most a single parent class. Because classes can have at most one parent but any
number of children, the relationships between classes form a tree-like inheritance bierarchy.

There are a lot of ways you can modify basic inheritance relationships. For example, a child class
can add properties, methods, and events (which together are called members) that are not available
in the parent class. A child class can also replace a parent class member with a new version.

In some languages the child class can even dehine a new version of a member that applies when
the program reters to an object by using the child class but not when it reters to it with a variable
that has the parent class’s type. For example, you might give the car class a Parallelrark
method that caretully backs the car into a parking space. The Corwvette class might define a

new version that locks up the brakes and slides the car into the space sideways as it James Bond
were driving. Now if the program dehines a variable of type car that reters to a Corvette object
and invokes its ParallelPark method, you get the hrst version. It the program dehnes a second
variable of type Corvette that reters to the same object and invokes its ParallelPark method,
vou get the second version.

The details of how you define classes, build inheritance hierarchies, and add or modity their
members depend on the language you use, so those things aren’t covered in this book. Before
moving on to other topics, however, you should know about the two main ways tor building
inheritance hierarchies: rehnement and generalization.

Refinement

Refinement is the process of breaking a parent class into multiple subclasses to capture some
difference between objects in the class. When I derived the Corvette, Edsel, and Pinto classes from
the car class, that was rehinement.

One danger to rehnement is overrefinement, which happens when you refine a class hierarchy
unnecessarily, making too many classes that make programming more complicated and confusing,
People are naturally good at categorizing objects. It takes only a few seconds of thought to break
cars into the classes shown in Figure 6-1. The open arrowheads point trom child classes to their
parent classes.

With a bit more work, you can grow this hierarchy until it is truly enormous. There are a couple
hundred models of car on the roads in the United States alone. You could refine most of those
models with different options such as different engine sizes, radios, speakers, alloy wheels, spoilers,
and seat warmers. You could add still more subclasses to represent different colors.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

124 | CHAPTER & LOW-LEVEL DESIGN

Car
Chevrolet Ford DelLorean
Corvette Camero Edsel Pinto Mustang DMC-12

FIGURE 6-1: People are naturally good at building inheritance hierarchies.

The resulting hierarchy would contain many thousands (possibly millions) ot classes. Obviously, a
hierarchy that large wouldn’t be useful. There’s no way you could write enough code to actually use
each of the classes, and it you're not going to use a class, why build it?

There are two main problems here. First, the classes are capturing data that isn’t relevant to the
application. The FreeWheeler application doesn’t care what color a car is or whether it has a CD
changer. It only cares about the car’s driving characteristics: mileage, maximum acceleration, turn
radius, and so torth. The hierarchy in Figure 6-1 doesn’t capture any of that information.

RISKY REFINEMENT

Even if the program cares about certain ditterences between objects, that doesn’
mean those ditferences would make a good inheritance hierarchy. For example,
suppose you're writing a car sales application. Customers often want to shop for
cars hrst by make, then by model, and then by option packages and other teatures.
In that case, the customer’s search strategy looks a lot like Figure 6-1.

Unfortunately, if you use those values to build the inheritance hierarchy, you get
a monstrously huge hierarchy. Even though the program cares a lot about those
differences, they’re better handled as properties rather than subclassing. It’s easy
enough for a program to search a database for specific property values such as
make or model without storing the data in a hierarchical format,

The second problem with this hierarchy is that the differences between cars could easily be
represented by properties instead of by different classes. The differences identified so far actually
are just different values for the same properties. For example, Chevrolet, Ford, and DeLorean are
all just different values for a Make property. You could eliminate that whole level of the hierarchy by

simply adding a Make property to the car class.

Similarly, a car’s model (Corvette, Edsel, and Mustang) is just a name for a specific type of car.
You may have some expectations based on the name (you probably think a Corvette is taster than a
Pinto), but to the FreeWheeler program, those are just labels.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

OO Design | 125

You can avoid these kinds of hierarchy problems it you focus on behavioral ditterences between the
ditterent kinds ot objects instead of looking at ditterences in properties.

For example, what are the behavioral differences between a Corvette and a Pinto? The Corvette
accelerates quicker, but both cars cam accelerate, just at different rates. They still have the same
acceleration behavior, so you can represent that difference as an Acceleration property in the car
class.

For an example where there is a behavioral ditference, consider transmission type. To accelerate a
car with automatic transmission to freeway speeds, you simply stomp on the gas pedal until the car
is going fast enough. Bringing a manual transmission car up to speed is much more complicated,
requiring you to use the gas pedal, the clutch, and the gear shift. Both kinds of vehicles accelerate,
but the details about how they do it are different.

In object-oriented terms, the car class might have an Accelerate method that makes the car
accelerate. The Automatic and Manual subclasses would provide different implementations of the
BRccelerate method that handle the appropriate details.

Figure 6-2 shows a revised inheritance hierarchy.

The first section under a class’s name lists its c
ar

properties (just Acceleration in this example). .
Acceleration

A subclass does not repeat items that it inherits

without modihcation trom its parent class. In Accalaraie]

this example, the Automatic and Manual classes

inherit the Acceleration property.

The second section below a class’s name shows il il
methods (Aecelerate in this example). The

method is italicized in the car class to indicate Accelerate Accelerate()

that it is not implemented there and must be FIGURE 6-2: This hierarchy focuses on behavioral
overridden in the child classes. differences between classes.

Generalization

Rehinement starts with a single class and creates child classes to represent differences between
objects. Generalization does the opposite: It starts with several classes and creates a parent for them
to represent common features.

For example, consider the ClassyDraw application in the examples in Chapter 4, “Requirement
Gathering,” and Chapter 5, “High-Level Design.” This program is a drawing application somewhat
similar to MS Paint, except it allows you to manipulate drawn objects. It enables you to select an
object, drag it into a new position, stretch it, move it to the top or bottom of the stacking order,
delete it, copy and paste it, and so forth.

The program represents drawn objects as (you guessed it) objects, so it needs classes such as
Rectangle, Ellipse, Polygon, lext, Line, Star, and Hypotrochoid.

These classes draw different shapes, but they also have a lot in common. They all let you click their
object to select it, move the object to the top or bottom of the drawing order, move the object, and
so forth.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

126 | CHAPTERé& LOW-LEVEL DESIGN

Because all those objects share these features, it makes sense to create a parent class that dehnes
them. The program can build a big array or list to hold all the drawing objects represented by the
parent class and then use polymorphism to invoke the common methods as necessary.

For a concrete example, suppose the user clicks part of a drawing to select a drawn object. Classes
such as Rectangle and Ellipse use different techniques to decide whether you clicked their
objects, but they both need a method to do that. You could call this method objectIszt and
malke it return true if the object is at a specific clicked location. The parent class, which I’ll call
Drawable, can define the ObjectIsat method. The child classes would then provide their own
implementations.

Figure 6-3 shows the drawing class inheritance hierarchy.

Just as you can go overboard with rehnement to build an inheritance hierarchy containing
thousands of car classes, you can also get carried away with generalization. For example, suppose
yvou're building a pet store inventory

application. You dehne a Customer Dikurakis
class and an Employee class. They

share some properties such as Name, PointlsAt()
Address, and ZodiacSign, so you

generalize them by making a verson T

class to hold the common properties.
Rectangle Ellipse Line

Next, you dehne various pet classes

such as bog, Cat, Gerbil, and PointlsAt() PointlsAt() PointlsAt()

Capvbara. You generalize them to

FIGURE 6-3: Generalization creates the Drawable parent class.
make a pet class.

In a ht of inspiration (possibly assisted by whatever you were drinking), you realize that people and
pets are all animals! So you make an Animal class to be a parent class for perseon and ret. They can
even share some properties such as name.

Logically, this makes sense. People and pets really are animals (as long as your pet store doesn’t sell
pet rocks or stuffed toys). However, it’s unlikely that the program will ever take advantage of this
tact. It’s hard to imagine the program building an array or list containing both employees and birds
and then treating them in a unitorm way. In all likelihood, the program will treat people and pets in
different ways, so they don’t need to be merged into a single inheritance hierarchy.

Hierarchy Warning Signs

The following list gives some questions you can ask yourself when trying to decide if you have an
effective inheritance hierarchy.

» Isittall and thin? In general, tall, thin inheritance hierarchies are more contfusing than shorter
ones. Tall hierarchies make it hard for developers to remember which class to use under
different circumstances. How tall an inheritance hierarchy can be depends on your application,
but if it contains more than three or four 1&?&15, you should make sure you reaﬂ}r need them all.

> Do you have a huge number of classes? Suppose your car sales application needs to track
make, model, year, color, engine, wheel size, and motorized cup holders. It you try to use

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Database Design | 127

classes to represent every possible combination, you’ll get a combinatorial explosion and
thousands ot classes. If you have more than a dozen or so classes, see it you can replace some
with simple properties.

» Does a class have only a single subclass? If so, then you can probably remove it and move
whatever it was trying to represent into the subclass.

» If there a class at the bottom of the hierarchy that is never instantiated? If the car hierarchy
has a HalfTrack class and the program never makes an instance of that class, then you
prﬁbﬂbl}’ don’t need the HalfTrack class.

> Do the classes all make common sense? If the car hierarchy contains a Hel icopter class,
there’s probably something wrong. Either the class doesn’t belong there or you should
rename some classes so things make sense. (Perhaps you need a vehicle class?)

> Do classes represent difterences in a property’s value rather than in behavior or the presence
of properties? A simple sales program might not need separate classes to represent notebooks
and three-hole punches because they’re both simple products that you sell one at a time. You
might want a separate class for more expensive objects like computers because they might
have a Warranty property that notebooks and hole punches probably don’t have.

Object Composition

Inheritance is one way vou can reuse code. A child class inherits all ot the code dehined by its
parent class, so you don’t need to write it again. Another way to reuse code is object composition, a
technique that uses existing classes to build more complex classes.

For example, suppose you define a Person class that has FirstName, Last Name, Address, and Phone
properties. Now you want to make a Company class that should include intormation about a contact
person.

You could make the company class inherit from the person class so it would inherit the FirstName,
LastName, Address, and Phone properties. That would give you places to store the contact person’s
information, but it doesn’t make intuitive sense. A company is not a kind of person (despite certain
Supreme Court rulings), so Company should not inherit trom prerson.

A better approach is to give the Company class a new property of type Person called
ContactPerson. Now the Company class gefts the benefit of the code defined b}r the person class
without the illogic and possible contusion of inheriting trom person.

This approach also lets you place more than one person object inside the Company class. For example,
it you decide the Company class also needs to store information about a billing contact and a shipping
contact, you can add more Person objects to the class. You couldn’ do that with inheritance.

DATABASE DESIGN

There are many ditterent kinds ot databases that you can use to build an application. For example,
specialized kinds of databases store hierarchical data, documents, graphs and networks, key/value
pairs, and objects. However, the most popular kind of databases are relational databases.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

128 | CHAPTER & LOW-LEVEL DESIGN

DATABASE RANKINGS

To see the top database engines ranked by popularity, go to db-engines.com/en/
ranking. It’s a pretty interesting list.

Relational databases are simple, easy to use, and provide a good set of tools for searching,
combining data from different tables, sorting results, and otherwise rearranging data.

Like object-oriented design, database design is too big a topic to squeeze into a tiny portion of
this book. However, there is room here to cover a few of the most important concepts of database
design. You can find a book on database design for more complete information. (For example, see
my book Beginning Database Design Solutions, Wrox, 2008.)

The tollowing section brietly explains what a relational database i1s. The sections after that explain
the hrst three forms of database normalization and why they are important.

Relational Databases

Betore you learn about database normalization, you need to at least know the basics of relational
databases.

A relational database stores related data in tables. Each table holds records that contain pieces ot
data that are related. Sometimes records are called tuples to emphasize that they contain a set of
related values.

The pieces of data in each record are called fields. Each held has a name and a data type. All the
values in ditferent records tor a particular held have that data type.

Figure 6-4 shows a small customer table holding hve records. The table’s helds are Customerid,
FirstName, LastName, street, City, state, and Zip. Because the representation shown in Figure 6-4
lays out the data in rows and columns, records are often called rows and helds are otten called columins.

Customerld FirstName LastName Street City State Zip

1028 Veronica Jenson 176 Bradley Ave Abend AZ 87351
2918 Kirk Wood 61 Beech St Bugsville CcT 04514
7910 Lila Rowe 8391 Cedar Ct Cobblestone sC 35245
3198 Deirdre Lemen 2819 Dent Dr Dove DE 29183
5002 Alicia Hayes 298 Elf Ln Eagle COo 83726

FIGURE 6-4: A table's records are often called rows and its fields are often called columns.

The “relational” part of the term “relational database™ comes from relationships defined between the
database’s tables. For example, consider the 0rders table shown in Figure 6-5. The Customers
table’s CustomerId field and the orders table’s Customerid field form a relationship between the two
tables. To find a particular customer’s orders, you can look up that customer’s CustomerId in the
Customers table in Figure 6-4, and then find the corresponding 0rders records.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Database Design | 129

Customerld Orderld DateOrdered DateFilled DateShipped
1028 1298 4/1/2015 4/4/2015 4/4/2015
2918 1982 4/1/2015 4/3/2015 4/4/2015
3198 2917 4/2/2015 4/7/2015 4/9/2015
1028 2201 47572015 4/6/2015 4/9/2015
1028 3010 4/9/2015 4/13/2015 4/14/2015

FIGURE 6-5: The Customers table’s Customerld column provides a link to

the Orders table's CustomerlD column.

One particularly useful kind of relationship is a foreign key relationship. A foreign key is a set of
one or more fields in one table with values that uniquely define a record in another table.

For example, in the orders table shown in Figure 6-3, the CustomerId field uniquely identifies a
record in the Customers table. In other words, it tells you which customer placed the order. There
may be multiple records in the orders table with the same Customerid (a single customer can place

multiple orders), but there can be only one record in the Customers table that has a particular

CustomerId value.

The table containing the foreign key is often called the child table, and the table that contains the
uniquely identihed record is otten called the parent table. In this example, the Orders table is the

child table, and the Customers table is the parent table.

LOOKUP TABLES

A lookup table is a table that contains values just to use as foreign keys.

For example, you could make a states table that lists the states that are allowed
by the application. If your company has customers only in New England, the
table might contain the values Maine, New Hampshire, Vermont, Massachusetts,
Connecticut, and R hode Island.

The Customers table would be a child table connected to the states table with a
foreign key. That would prevent a user from adding a new customer in a state that

wasn’t allowed.

In addition to validating user inputs, lookup tables allow the users to conhgure
the application. If you let users modify the states table, they can add new records

when they decide to work with customers in new states.

Building a relational database is easy, but unless you design the database properly, you may

encounter UHEIPEETEd prc}blems. ThDSE pI’GIJlEITlS may bt‘ thﬂt:

»

>

Duplicate data can waste space and make updating values slow.

You may be unable to delete one piece ot data without also deleting another unrelated piece

of data.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

130 | CHAPTER& LOW-LEVEL DESIGN

> An otherwise unnecessary piece of data may need to exist so that you can represent some
other darta.

> ThE CEE[I'E[]:IEIS“E may not E'lil'DW multipiﬁ '5.-"2111.1135 thﬁll you I]E‘E‘d Thf.‘mi

The database-speak euphemism for these kinds of problems is anomalies.

Database normalization is a process of rearranging a database to put it into a standard (normal)
torm that prevents these kinds of anomalies. There are seven levels of database normalization that
deal with increasingly obscure kinds of anomalies. The following sections describe the first three
levels of normalization, which handle the worst kinds of database problems.

First Normal Form

First normal form (1NF) basically says the table can be placed meaningtully in a relational
database. It means the table has a sensible, down-to-earth structure like the kind your grandma
used to make.

Relational database products tend to enforce most of the 1NF rules automatically, so if you don’t do
anything too weird, your database will be in INF with little extra work.

The official requirements for a table to be in 1NF are:
1. Each column must have a unique name.
. The order of the rows and columns doesn’t matter.
. Each column must have a single data type.

4., No two rows can contain identical values.
5. Each column must contain a singie value.

. Columns cannot contain repeating groups.
To see how you might be tricked into breaking these rules, suppose you’re a weapons instructor at a

tantasy adventure camp. You teach kids how to whack each other safely with foam swords and the
like. Now consider the signup sheet shown in Table 6-1.

TABLE 6-1: Weapons Training Signup Sheet

NAME WEAPON WEAPON
Shelly Silva Broadsword

Louis Christenson Bow

Lee Hall Katana

Sharen Simmons Broadswerd Bow
Felipe Vega Broadsword Katana
Louis Christenson Bow

Kate Ballard Everything

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Database Design | 131

Here campers list their names and weapons tor which they want training. You’ll call them in tor
instruction on a hrst-come-hrst-served basis.

This signup sheet violates the 1NF rules in several ways.

It violates Rule 1 because it contains two columns named weapon. The idea is that a camper might
want help with more than one weapon. That makes sense on a signup sheet but won’t work in a
relational database.

It violates Rule 2 because the order of the rows indicates the order in which the campers signed up
and the order in which you’ll tutor them. In other words, the ordering of the rows is important.
(The order of the columns might also be important if you assume the first weapon column holds the
camper’s primary weapon. |

It violates Rule 3 because Kate Ballard didn’t enter the name of a weapon in the first weapon
column. Ideally, that column’s data type would be weapon and campers would just enter a weapon’s
name, not a general comment such as “Everything.”

It violates Rule 4 because Louis Christenson signed up twice tor tutoring with the bow. (I guess he
wants to get really good with the bow.)

The signup sheet doesn’t violate Rule 5, but that’s mostly due to luck. There’s nothing (except
common sense) to stop campers trom entering multiple weapons in each weapon column, and that
would violate Rule 5.

Here's how you can put this signup sheet into 1NF.

Rule 1—The signup sheet has two columns named weapon. You can hx that by changing their
names to Weaponl and Weaponz. (That violates Rule 6, but we’ll hx that later.)

Rule 2—The order of the rows in the signup sheet determines the order in which you’ll call campers
for their tutorials, so the ordering of rows is important. To fix this problem, add a new field that stores
the ordering data explicitly. One way to do that would be to add an order field, as shown in Table 6-2.

TABLE 6-2: Ordered Signup Sheet

ORDER NAME WEAPON1 WEAPON2
1 Shelly Silva Broadsword

2 Louis Christenson Bow

3 Lee Hall Katana

4 Sharon Simmons Broadsword Bow

5 Felipe Vega Broadsword Katana

6 Louis Christenson Bow

7 Kate Ballard Everything

An alternative that might be more useful would be to add a Time field instead of an order field,
as shown in Table 6-3. That preserves the original ordering and gives extra information that the
campers can use to schedule their days.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

| CHAPTER 6 LOW-LEVEL DESIGN

TABLE 6-3: Signup Sheet with Times

TIME NAME "WEAPONI1 "WEAPON2
9:00 Shelly Silva Broadsword

9:30 Louis Christenson Bow

10:00 Lee Hall Katana

10:30 Sharon Simmons Broadsword Bow
11:00 Felipe Vega Broadsword Katana
11:30 Louis Christenson Bow

12:00 Kate Ballard Everything

Rule 3—In Table 6-3, the weaponi column holds two kinds of values: the name of a weapon or
“Everything” (tor Kate Ballard).

Depending on the application, there are several approaches you could take to fix this kind
of problem. You could split a column into two columns, each containing a single data type.
Alternatively, you could move the data into separate tables linked to the original record by a key.

In this example, I’ll replace the value “Everything” with multiple records that list all the possible
weapon values. The result is shown in Table 6-4.

TABLE 6-4: Signup Sheet with Explicitly Listed Weapons

TIME NAME WEAPON1 WEAPON2
9:00 Shelly Silva Broadsword

2:30 Louis Christenson Bow

10:00 Lee Hall Katana

10:30 Sharon Simmons Broadsword Bow
11:00 Felipe Vega Broadsword Katana
11:30 Louis Christenson Bow

12:00 Kate Ballard Broadsword

12:00 Kate Ballard Bow

12:00 Kate Ballard Katana

Rule 4—The current design doesn’t contain any duplicate rows, so it satishes Rule 4.

Rule 5—Right now each column contains a single value, so the current design satishes Rule 5. (The
original signup sheet would have broken this rule if it had used a single Weapons column instead of
using two separate columns and people had written in lists of the weapons they wanted to study.)

Rule 6—This rule says a table cannot contain repeating groups. That means you can’t have two
columns that represent the same thing. This means a bit more than two columns don’t have the
same data type. Tables otten have multiple columns with the same data types but with different
meanings. For example, the Camper table might have HomePhone and CellPhone fields. Both of them
would hold phone numbers, but they represent ditferent kinds of phone numbers.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

Database Design | 133

In the current design, the Weapon1 and Weaponz columns hold the same type and kind of data, so

they form a repeating group.

ROTTEN REPETITION

In general, adding a number to field names to differentiate them is a bad idea. If

the program doesn’t need to differentiate between the two values, then adding a

number to their names just creates a repeating group.

The only time this makes sense is if the two fields contain similar items that truly

have different meanings to the application. For example, suppose a space shuttle

requires two pilots: one to be the primary pilot and one to be the backup in case the

primary pilot is abducted by aliens. In that case, you could name the helds that store

their names Pilot1 and Pilot2 because there really is a ditterence between them.

Usually in cases like this, you can give the fields more descriptive names such as

Pilot and Copilot.

Another way to look at this is to ask yourselt whether the record “Sharon Simmons, Broadsword,

Bow™ and the rearranged record “Sharon Simmons, Bow, Broadsword™ would have the same

meaning. If the two have the same meaning even if you switch the values of the two fields, then

those fields form a repeating group.

The way to fix this problem is to pull the repeated data out into a new table. Use fields in the

original table to link to the new one. Figure 6-6 shows the new design. Here the Tutorials and

TutorialWeapons tables are linked by their Time fields.

Time Name Time Weapon
2:00 Shelly Silva 9:00 Broadsword
9:30 Louis Christenson 9:30 Bow

10:00 Lee Hall 10:00 Katana

10:30 Sharon Simmons 10:30 Broadsword

11:00 Felipe Vega 10:30 Bow

11:30 Louis Christenson 11:00 Broadsword

12:00 Kate Ballard 11:00 Katana

)

11:30 Bow

12:00 Broadsword

12:00 Bow

12:00 Katana

FIGURE 6-6: This design is in first 1INF. Lines connect related records.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

134 | CHAPTER & LOW-LEVEL DESIGN

Second Normal Form
A table is in second normal form (2NF) it it satishes these rules:
1. Itisin INFE
2. All non-key fields depend on all key fields.
Without getting two technical, a key is a set of one or more hields that uniquely identifies a record. Any

table in INF must have a key because 1NF Rule 4 says, “No two rows can contain identical values.” That
means there must be a way to pick fields to guarantee uniqueness, even it the key must include every field.

For an example of a table that is not in 2NF, suppose you want to schedule games for campers at the
tantasy adventure camp. Table 6-5 lists the scheduled games.

TABLE 6-5: Camp Games Schedule

TIME GAME DURATION MAXIMUMPLAYERS
1:00 Goblin Launch 60 mins 8
1:00 Water Wizzards 120 mins 6
2:00 Panic at the Picnic 90 mins 12
2:00 Goblin Launch 60 mins 8
3:00 Capture the Castle 120 mins 100
3:00 Water Wizzards 120 mins 6
4:00 Middle Earth Hold’em Poker 90 mins 10
5:00 Capture the Castle 120 mins 100

The table’s primary key is Time+Game. It cannot have two instances of the same game at the same
time (because you don’t have enough equipment or counselors), so the combination of Time+Game
uniquely identifies the rows.

You should quickly review the 1NF rules and convince yourself that this table is in 1NF. In case you
haven’t memorized them yet, the 1NF rules are:

1. Each column must have a unique name.

The order of the rows and columns doesn’t matter.
Each column must have a single data type.

No two rows can contain identical values.

Each column must contain a single value.

O & W

Columns cannot contain repeating groups.

Even though this table is in 1NF, it sutfers from the following anomalies:

> Update anomalies—If you modity the Duration or MaximumPlayers value in one row, other
rows containing the same game will be out of sync.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Database Design | 135

» Deletion anomalies—Suppose you want to cancel the Middle Earth Hold e Poker game at
4:00, so you delete that record. Then you've lost all the intormation about that game. You no
longer know that it takes 90 minutes and has a maximum of 10 players.

> Insertion anomalies—You cannot add information about a new game without
scheduling it for play. For example, suppose Banshee Bingo takes 45 minutes and has
a maximum of 30 players. You can’t add that information to the database without
scheduling a game.

The problem with this table is that it’s trying to do too much. It’s trying to store information about
both games (duration and maximum players) and the schedule.

The reason it breaks the 2NF rules is that some non-key fields do not depend on all the key fields.
Recall that this table’s key fields are Time and Game. A game’s duration and maximum number of
players depends only on the Game and not on the Time. For example, Water Wizzards lasts for 120
minutes whether you play at 1:00, 4:00, or midnight.

To hx this table, move the data that doesn’t depend on the entire key into a new table. Use the key
helds that the data does depend on to link to the original table.

Figure 6-7 shows the new design. Here the ScheduledGames table holds schedule intormation and

the ames table holds information specific to the games.

1:00 Gaoblin Launch Goblin Launch 60 min 8
1:00 Water Wizzards Water Wizzards 120 min 6
2:00 Panic at the Picnic / Panic at the Picnic 90 min 12
2:00 Goblin Launch / Capture the Castle 120 min 100
300 Capture the Castle Middle Earth Hold'em Poker 20 min 10
3:00 Water Wizzards Banshee Bingo 45 min 30
4:00 Middle Earth Hold'em Poker

500 Capture the Castle

FIGURE 6-7: Moving the data that doesn’t depend on all the table’s key fields puts this table in ZNF.

Third Normal Form

A table is in third normal form (3NF) if:
1. Itisin 2NF

2. It contains no transitive dependencies.

A transitive dependency is when a non-key feld’s value depends on another non-key field’s value.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

136 | CHAPTERé& LOW-LEVEL DESIGN

For example, suppose the fantasy adventure camp has a library. (So campers have something to read
atter they get injured playing the games.) Posted in the library is the tollowing list of the counselors’
tavorite books, as shown in Table 6-6.

TABLE 6-6: Counselors’ Favorite Books

COUNSELOR FAVORITEBEOOK AUTHOR PAGES
Becky Dealing with Dragons Patricia Wrede 240
Charlotte The Last Dragonslayer Jasper Florde 306
J.E. Gil's All Fright Diner A. Lee Martinez 288
Jon The Last Dragonslayer Jasper Florde 306
Luke The Color of Magic Terry Pratchett 288
Noah Dealing with Dragons Patricia Wrede 240
Rod Equal Rites Terry Pratchett 272
Wendy The Lord of the Rings Trilogy J.R.R. Tolkein 1178

This table’s key is the Counselor held.
It you run through the 1NF rules, you’ll see that this table is in 1NF.

The table has only a single key held, so a non-key held cannot depend on only some of the key helds.
That means the table is also in 2NEFE

When posted on the wall of the library, this list is hine. Inside a database, however, it sutters trom
the tollowing anomalies:

» Update anomalies—It yvou change the rages value tor Becky’s row (Dealing with Dragons),
it will be inconsistent with Noah’s row (also Dealing with Dragons). Also it Luke changes his
tavorite book to Majestrum: A Tale of Hengis Hapthorn, the table loses the data it has about
The Color of Magic.

» Deletion anomalies—If J.C. quits being a counselor to become a professional wrestler and
you remove his record from the table, you lose the information about Gil’s All Fright Diner.

»

Insertion anomalies—You cannot add information about a new book unless it’s someone’s
favorite. Conversely, you can’t add information about a person unless he declares a favorite book.

The problem is that some non-key helds depend on other non-key helds. In this example, the Author
and pages helds depend on the FavoriteBock field. For Example, any record with FavoriteBook
The Last Dragonslayer has Ruthor Jasper Fforde and rages 306 no matter whose favorite it is.

DIAGNOSING DEPENDENCIES

A major hint that there is a transitive dependency in this table is that there are lots
ot duplicate values in ditterent columns. Another way to think about this is that
there are “tuples” of data (FavoriteBook+Buthor+Pages) that go together.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Database Design | 137

You can hx this problem by keeping only enough information to identity the dependent data and
moving the rest of those helds into a new table. In this example, you would keep the FavoriteBook
field in the original table and move its dependent values Author and pages into a new table.

Figure 6-8 shows the new design.

Becky Dealing with Dragons Dealing with Dragons Patricia Wrede 240
Charlotte The Last Dragonslayer The Last Dragonslayer Jasper Fforde 306
i Gil's All Fright Diner Gil's All Fright Diner A Lee Martinez 288
Jon The Last Dragonslayer / The Color of Magic Terry Pratchett 288
Luke The Calor of Magic Equal Rites Terry Pratchett 272
Noah Dealing with Dragons The Lord of the Rings Trilogy J.R.R. Tolkein 1178
Rod Equal Rites

Wendly The Lord of the Rings Trilogy

FIGURE 6-8: Moving non-key fields that depend on other non-key fields into a separate table puts
this table in 3NF.

Higher Levels of Normalization

Higher levels of normalization include Boyce-Codd normal form (BCNF), tourth normal form
(4NF), fifth normal form (5NF), and Domain/Key Normal Form (DKNF). Some of these later
levels of normalization are fairly technical and contusing, so I won’t cover them here. See a book on

database design for details.

Many database designs stop at 3NF because it handles most kinds of database anomalies without a
huge amount of ettort. In fact, with a little practice, you can design database tables in 3NF from the

beginning, so you don’t need to spend several steps normalizing them.

More complete levels of normalization can also lead to confusing database designs that may make
using the database harder and less intuitive, possibly giving rise to extra bugs and sometimes

reduced performance.

One particular compromise that is often useful is to intentionally leave some data denormalized for
performance reasons. A classic example is in ZIP codes. ZIP codes and street addresses are related,
so if you know a street address, you can look up the corresponding ZIP code. For example, the ZIP

code for 1 Main St., Boston, MA is 02129-3786.

Ic]e:-llly, normalization would tell you to store :::nl}r the street address and then use it to look up the
ZIP code as needed. Unfortunately, these relationships aren’t as simple as, “All Main St. addresses in

Boston have the ZIP code 02129-3786.” ZIP codes depend on which part of the street contains the
address and sometimes even which side of the street the address is on. That means you can’t build a

table to perform a simple lookup.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

138 | CHAPTER & _OW-LEVEL DESIGN

You could build a much more complicated table to ind an address’s ZIP code, perhaps with some
contusing code. Or you might use some sort of web service provided by the United States Postal Service.

Usually, however, developers just include the ZIP code as a separate field in the address. That means
there’s a lot of “unnecessary” duplication, but it doesn’t take up much extra room and it makes
looking up addresses much easier.

LOADS OF CODES

Addresses and postal codes are also related outside of the United States. For example,
the postal code for 1 Main St., Dungiven, Londonderry England is BT47 4PG, and
the postal code for 1 Main St., Vancouver, BC, Canada is V6A 3Y3. You can use

various postal websites to look up codes for ditferent addresses in ditferent countries,

In theory, you could look up the postal codes tor any address. In practice, it’s a lot
easier to just include them in the address data.

SUMMARY

Low-level design fills in some of the gaps left by high-level design to provide extra guidance to
developers before they start writing code. It provides the level of detail necessary for programmers
to start writing code, or at least for them to start building classes and to finish defining interfaces.
Low-level design moves the high-level focus from what to a lower level tocus on bouw.

Like most of the topics covered in this book, low-level design is a huge subject. There’s no way to cover
every possible approach to low-level design in a single chapter. However, this chapter does provide an
introduction to two important facets of low-level design: object-oriented design and database design.

Object-oriented design determines what classes the application uses. Database design determines
what tables the database contains and how they are related. Object-oriented design and database
design aren’t all you need to do to ensure success, but poor designs almost always lead to failure.

The boundary between high-level and low-level design is rather arbitrary. Low-level design tasks are
similar to high-level design tasks but with a greater level of detail. In fact, the same kinds of tasks
can slip into the next step in software engineering: development.

The next chapter provides an introduction to software development. It explains some general
methods you can use to organize development. It also describes a few usetul techniques you can use
to reduce the number of bugs that are introduced during development.

EXERCISES

1. Considerthe clas syDraw classes Line, Rectangle, Ellipse, Star, and Text. What properties do
these classes all share? What properties do they not share? Are there any properties shared by
some classes and not others? Where should the shared and nonshared properties be implemented?

2. Draw an inheritance diagram showing the properties you identified for Exercise 1. (Create
g g prop Y
parent classes as needed, and don't forget the Drawable class at the top.)

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Summary | 139

3. The following list gives the properties of several business-oriented classes.

e Customer—DName, Phone, Address, Bill ingAddress, Customer Id

Hourlw—mMName, Phone, Address, Emploveeld, HourlvRate

Manager—Name, Phone, Address, Emploveeld, Office, Salaryv, Boss, Emplovees
Salaried—DmName, Phone, Address, EmploveelId, Office, Salary, Boss

Suppl ier—Name, Phone, Address, Products, Suppl ierId

YYYYY

VicePresident—NMName, Phone, Address, EmployeeId, Office, Salary, Managers

Assuming a Supplier is someone who supplies products for your business, draw an inheritance
diagram showing the relationships among these classes. (Hint: Add extra classes if necessary.)

4. How would the inheritance hierarchy you drew for Exercise 3 change if you decide to add the
Boss property to the Hourly class?

5. How would the inheritance hierarchy you drew for Exercise 3 change if Supplier represents a
business instead of a person?

6. Suppose your company has many managerial types such as department manager, project
manager, and division manager. You also have multiple levels of vice president, some of
whom report to other manager types. How could you combine the salaried, Manager, and
VicePresident types you used in Exercise 37 Draw the new inheritance hierarchy.

3 If a table includes a ZIP code with every address, what 1NF, 2NF, and 3NF rules does the table break?

8. What data anomalies can result from including postal codes in address data? How bad are
they? How can you mitigate the problems?

@. In the United States Postal Service's ZIP+4 system, ZIP codes can include 4 extra digits as
in 20500-0002. Suppose you store address data with a single Zip field that has room for 10
characters. Some addresses include only a 5-digit ZIP code and others include a ZIP+4 code.
Does that violate any of the TNF, 2NF, or 3NF rules? Should you do anything about it?

10.

Do telephone area codes face issues similar to those involving ZIP codes?

11. Suppose you're writing an application to record times for dragon boat races and consider the
table shown in Figure 6-9. Assume the table's key is Heat. What TNF, 2NF, and 3NF rules does
this design violate?

12. How could you fix the table shown in Figure 6-97

Distance | Heat | Time | Team Team Winner Time Time
500 1 9:00 | Buddhist Temple | Wicked Wind Buddhist Temple | 2:55.372 | 2:57.391

500 2 9:20 | Rainbow Energy | Rising Typhoon | Rising Typhoon 3:10.201 | 3:01.791
1000 3 9:40 | Math Dragons Supermarines Math Dragons 9:52.029 | 6:23.552
1000 4 10:00 | Flux Lake Tritons | Elf Power Elf Power 6:08.480 | 6:59.717

FIGURE 6-9: This table records dragon boat race results.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

140 | CHAPTER& LOW-LEVEL DESIGN

» WHAT YOU LEARNED IN THIS CHAPTER

>

Y ¥y ¥ Y ¥

Y

A class dehines the properties, methods, and events provided by instances of the class.
Nouns in the project description make good candidates for classes.

Inheritance provides code reuse.

Polymorphism lets a program treat an object as if it had a parent class’s type.

In refinement, you add details to a general class to define subclasses.

In generalization, you extract common features from two or more classes to define a parent
class.

Inheritance hierarchy warning signs include:
» The hierarchy is tall and thin.
The hierarchy contains a large number ot classes.
A class has a single subclass.
A class at the bottom ot the hierarchy is never instantiated.

The classes don’t make common sense.

Y Y Y Y ¥

Classes represent differences in property values, not different properties themselves or
ditferent behaviors.

Composition provides code reuse. It also lets you include multiple copies of a type of object
inside a class, something inheritance doesn’t do.

Relational databases contain tables that hold records (or rows). The records in a table all
have the same helds (or columns).

A foreign key forms a relationship between the values in a parent table and the values in a
child table. The child table’s fields must contain values that are present in the parent table.

A lookup table is a foreign key parent table that simply defines values that are allowed in
other tables.

Normalization protects a database trom data anomalies.
INF rules:
1. Each column must have a unique name.
The order of the rows and columns doesn’t matter.
Each column must have a single data type.

2
3
4, No two rows can contain identical values.
5. Each column must contain a single value.
6

. Columns cannot contain repeating groups.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

Summary | 141

» 2NF rules:

1. Itisin 1INF.

3. AllsiondkesBelds dependion all key Belds;
» 3NF rules:

1. TItisin 2NF,

2. It contains no transitive dependencies. (No non-key helds depend on other non-key

fields.)

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Development

A good programmer is someone who always looks both ways before
crossing a one-way street.

—Douc LiNnDER

Always code as if the guy who ends up maintaining your code will be a

violent psychopath who knows where you live.

—MARTIN GoLDING

WHAT YOU WILL LEARN IN THIS CHAPTER:

Tools that are useful to programmers
How to decide which algorithms are better than others

How to use top-down design to turn designs into code

L . -

Programming tips that can make code easier to debug and maintain

To many programmers, development is the heart of software engineering. It’s where fingers
hit the keyboard and churn out the actual program code of the system. Without development,
there is no application.

As is the case with other stages of software dﬁvﬁlﬂpment, the edges of development are a bit
blurry. Low-level design may identity the classes that a program will need, but it may not spell
out every method that the classes must provide and it might provide few details about how
those methods work. That means the development stage must still include some design work
as developers figure out how to build the classes.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

144 | CHAPTER7 DEVELOPMENT

Similarly, the next stage of software engineering, testing, often begins before development is
completely hinished. In tact, it’s best to test software early and otten. It’s widely known that bugs
are easiest to hnd and hx if they’re detected soon after they’re created, so it possible you should test
every method you write as soon as it’s finished (sometimes even before it’s finished).

Most developers write programs because they like to write code. (I know I do. For me, solving

a tricky programming problem is like solving a difficult Sudoku puzzle. I get a great feeling

of satistaction from crunching a bunch of numbers and having a beautiful fractal or a three-
dimensional game pop out.) Over the years, programmers have collectively spent a huge amount
of time programming, ixing bugs in their code, and thinking of ways to avoid similar bugs in the
tuture. That has generated a huge number of books about programming style and techniques for
avoiding, detecting, and fixing bugs.

This chapter provides an introduction to some of the techniques that I've found most useful over the
vears. [t begins by describing some tools and general problem-solving approaches that you can use
to turn the description of a method into code. It then explains some specific techniques that you can
use to make your code easier to debug and maintain.

It you’re not a programmer, for example, if youre a project manager or a customer, you may not
need to memorize every one of these rules and apply them to your daily lite. However, it’s still worth
yvour time to read them so that you’ll know what’s involved in writing good code (and so you’ll
understand what the programmers are complaining about).

USE THE RIGHT TOOLS

Including overhead (othce space, computer hardware, network hardware, Internet service provider,
vacation, sick time, a well-stocked soda machine, and so torth), employing a programmer can easily
cost more than $100,000 per year. Still I have seen managers refuse to spend a few hundred bucks
for proper programming tools. I’ve seen projects end the year with thousands of dollars left over for
hardware expenses, but not a nickel for software tools.

When you're spending $50 per hour on each employee, you don’t have to save much of their time to
make a little extra expense worthwhile. You don’t need to go crazy and spend thousands of dollars

to buy everyone a high-end video recording package (unless that’s what your business does), but you
should spend a little money to make sure your team has all the tools it needs.

The tollowing sections describe some of the development tools that every programmer should have.

Hardware

Few things are as frustrating as trying to write software on inadequate hardware. Programmers
need fast computers with lots of memory and disk space. A programmer with an underpowered
computer or insufficient memory takes longer to do everything.

Even worse, waiting for slow compilations breaks the programmer’s train of thought. To write bug-
tree (or at least minimally buggy) code, a programmer must stay focused on a method’s design until it
has been completely written. Breaking the writing process into dozens of chunks separated by several
minutes of thumb twiddling (or more likely, trips to the water cooler) breaks the programmer’s

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Use the Right Tools | 145

train of thought, so he needs to re-create an understanding of the code each time. It each new
understanding doesn’t match the previous ones, the result is tar more likely to contain bugs.

THE TORTOISE AND THE SLOTH

I once worked on an application using a slow development environment. I would
add the next feature to the c:::cle, press the Cﬂmpilﬁ buttnn, and wander off for five
or six minutes to wait for the compilation to finish. It was just too frustrating to sit
there staring at the screen while the compiler slowly dribbled out periods to tell me
that it was working and not dead.

Meanwhile my business partner was stuck on another project but with a similar
development cycle. We spent a lot of time in the hallway talking about vacations.

Atfter about a month of that, I got a new development environment that had a lot
fewer features but that was much faster. It let me reproduce everything I had done
in the previous month in just two days. As you can probably guess, I never used the
other environment again.

Make sure the programmers have all the hardware resources they need to do their jobs quickly and
etfectively. If that means buying more memory, disk space, or even new computers, do it. It’s insane
to waste hundreds of hours a year of a programmer’s time to save a few hundred dollars. (Although
I’'ve known managers who did exactly that. In fact, I've known managers who wouldn’t pay for
new hardware for their programmers, but who needed the absolute top-of-the line computers for
themselves so that they could fill out expense reports and answer e-mail.)

There are two drawbacks to buying the programmers everything they need. First, some
programmers will go overboard and buy all sorts of fun toys that they don’t actually need. Most
programmers don’t need a USB controlled NERF rocket launcher or a Darth Vader USB hub. If you
have the money, you might let some of those purchases slide in the interests of morale. Otherwise,
vou might want to check the product SKUs on the purchase requisitions you're signing. (I’ve known
people to try to requisition Dalmatian puppies and cars, mostly as jokes. Those were caught, but

[know of one lab that managed to buy a hot tub one piece at a time. They got in a whole lot of...
well...hot water.)

The second and far more important drawback to giving developers everything they want is that
they sometimes forget that their users may not have such nice equipment. I've used applications that
were blazingly fast on the developers’ computer but that were painfully slow for the users. Modern
computers are fast enough and cheap enough that this isn’t the problem it used to be in the “old
days” two or three years ago, but you should always test applications with hardware that is similar
to whatever your end users will be stuck with.

Network

['ve known development groups that didn’t allow access to external networks. | can understand
why that might be necessary it you're designing a new Minecraft mod and are worried that foreign

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

146 | CHAPTER7 DEVELOPMENT

hackers will steal your plans and sell them to terrorists, but if it’s at all possible, you should allow
programmers to have tree access to the Internet. Often a quick search can hnd a solution to a
programming problem that would otherwise take hours to solve.

For example, when I'm working on a tricky project, I often use my own websites (www.csharphelper
.com and www.vb-helper.com) to look up specihic techniques. My sites are particularly usetul to me
because they hold solutions to lots of problems I've encountered in the past and because I know more
or less what they contain. I also often find solutions on Wikipedia (www.wikipedia.org)and I find a
lot of mathematical solutions on Woltram MathWorld (mathwerld.welfram.com). And, of course, I
often use a search engine to look for other solutions.

You should gently encourage staff members not to spend their whole day playing Cookie Clicker
or in chat rooms arguing about who is better, Kirk or Picard, but try to provide a fast Internet
connection and the freedom to use it.

Development Environment

This is the absolute minimum necessary to make programming possible. It at least includes the
compiler or interpreter that translates program code into something the computer can execute.

An integrated development environment (IDE) such as Eclipse (mostly for Java, although plug-ins
let you write in other languages such as C++ or Ruby) or Visual Studio (for Visual C#, Visual Basic,
Visual C++ JavaScript, and F#) can also include much more. Depending on the version you have
installed, they can include debuggers, code profilers, class visualization tools, auto-completion when
typing code, context-sensitive help, team integration tools, and more.

Note that you don’ always need the fanciest development environment possible. For example,
Visual Studio comes in many ditterent versions, ranging from the tree “express” edition designed

tor individual users, to the “protessional™ and “ultimate™ editions designed for large project teams,
which cost a whole lot (MSRP, prices in U.S. dollars). The more expensive versions include tools and
resources that are most usetul for larger projects so, if you’re writing a small application by yourself,
yvou may do just as well with the tree express edition.

Similarly, Eclipse comes in a variety of IDEs with a lot of ditferent plug-ins to meet the needs of
different kinds of users. For example, Eclipse for Testers is designed for testers. (Well, duh.) If you’re
not doing a lot of testing, you may want to use a ditferent version.

WHO KNOWS

Most mature develmpmﬁnt environments include remarkabl}f pnwerful tools for
writing code. They’re so effective for a very good reason: the programmers who
wrote them know what you need to write programs. In contrast, programmers may
not know a lot about court reporting software, medical diagnostics, or cabinet
design. However, if programmers know anything, they know what features make
development environments effective. There will always be some variation, and

you may need to pay extra to get the best features, but there are some amazingl}f
powerful tools out there if you’re willing to learn how to use them.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Use the Right Tools | 147

Source Code Control

If vour development environment doesn’t include source code control, a separate system is essential.
Chapter 2, “Before the Beginning,” explains that a documentation management system is important
for letting you track the many documents that make up a project. Source code control is even more
important for program code where changing a single character can reduce a working program to a
worthless pile of gibberish.

A good source code management system enables you to go back through past versions of the
software and see exactly what changes were made and when. If a program stops working, you can
pull out old versions of the code to see which changes broke the program. After you know exactly
what changes were made between the last working version and the first broken one, you can figure
out which changes caused the bug and you can fix them.

Source code control programs also prevent multiple programmers from tripping over each other as
they try to modify the same code at the same time.

Profilers

Prohlers let you determine what parts of the program use the most time, memory, hles, or other
resources. T hese can save you a huge amount of time when you’re trying to tune an application’s
performance. (I'll say more about this in the section “Defer O ptimization™ later in this chapter.)

You may not need to buy every programmer a profiler. Typically, a small part of a program’s code
determines its overall performance, so you usually don’t need to study every line’s performance
extensively. Still it’s important to have prohilers available when they are needed.

Static Analysis Tools

Profilers monitor a program as it executes to see how it works. Static analysis tools study code
without executing it. They tend to focus on the code’s style. For example, they can measure how
interconnected different pieces of code are or how complex a piece of code is. They can also
calculate statistics that may indicate code quality and maintainability such as the number of
comments per line of code and average the number of lines of code per method.

Testing Tools

Testing tools, particularly automated tools, can make testing a whole lot taster, easier, and more
reliable. I’ll talk more about testing tools in the next chapter (which covers testing). For now, just be
aware that every programmer must perform at least some testing, so everyone should have access to
testing tools.

Source Code Formatters

Some development environments do a better job of formatting code than others. For example, some
environments automatically indent source code to show how code is nested in if-then statements
and loops. That formatting makes code easier to read and understand. That in turn reduces the
number of bugs in the code and makes fiinding and fixing bugs easier.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

148 | CHAPTER7 DEVELOPMENT

Other development environments don’t provide much in the way of formatting. If you’re using that
kind of environment, a separate code tormatter can standardize indentation, align and reformat
comments, break code so it fits on a printout, enforce some code standards, and more.

(Your team will need to decide on the level of code uniformity you want to enforce. Too much
standardization can be annoying to developers, but left to their own devices, a few programmers
will produce such free-spirited results that their code looks more like an E.E. Cummings poem than
professional software.)

Refactoring Tools

The term refactoring is programmer-speak for “rearranging code to make it easier to understand,
more maintainable, or generally better.” Some refactoring tools (which may be built into the IDE)
let you do things like easily define new classes or methods, or extract a chunk of code into a new
method.

Refactoring tools can be particularly useful if you’re managing existing code (as opposed to writing
new code).

Training

This is another category where some managers are penny-wise and pound-foolish. Training makes
programmers more effective and keeps them happy. A few thousand dollars spent on training can
greatly improve performance and help you retain your statf.

Online video training courses and books are often less effective than in-person training, but they’re
also a lot less expensive and they let you study whenever you have the time. If a $50 book gives you
a single new tip, then it’s probably worth it.

You do need to be a little selective, however. If you buy too many books, you won’t have time to
read them all.

SELECTING ALGORITHMS

After low-level design is mostly complete (and you have all your tools in place), you should have a
good sense of what classes you need and the tasks those classes need to perform. The next step is
writing the code to pertorm those tasks.

For more complicated problems, the hrst step is researching possible algorithms. An algorithm
is like a recipe tor solving a hard programming problem. In the decades since computers were
invented, many ethcient algorithms have been developed to solve problems such as the tollowing:

» Sorting and arranging pieces of data

» Quickly locating items in databases

» Finding optimal paths through street, power, communication, or other networks
>

Designing networks to provide necessary capacity and redundancy to prevent single points
ot tailure

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Selecting Algorithms | 149

Encrypting and decrypting data
Picking optimal investment strategies

Finding least cost construction and production strategies

Y ¥Y Y Y

Many, many more

For c::nmplicatec] problems like these, the difference between a g{:-c}r:] algurithm and a bad one can
make the difference between finding a good solution in seconds, hours, days, or not at all.

Fortunately, these sorts of algorithms have been extensively studied for years, so you usually don’t
need to write your own from scratch. You can use the Internet and algorithm books to look for an
approach that fits your problem. (For example, see my introductory book Essential Algorithms: A
Practical Approach to Computer Algorithms, Wiley, 2013.)

You’ll probably still need to do some work plugging the algorithm into your application, but
there’s no need for you to reinvent everything trom scratch. However, even if you don’t need
to build an algorithm from the ground up, you should know some of the characteristics that
make an algorithm a good choice tor you. The tollowing sections describe some of those
characteristics.

Effective

Obviously, an algorithm won’t do you much good if it doesn’t solve your particular problem. An
algorithm that finds critical paths through a PERT chart (remember those from Chapter 3, “Project
Management™?) won’t help you much with calculating the ideal maintenance schedule for a fleet of
trucks. You need to pick the right algorithm for the job.

If an algorithm doesn’t meet your needs exactly, look tor an algorithm that does. If you can find
something that only comes close but doesn’t gquite fit your situation, ask yourself whether the
algorithm’s result is good enough or if you can adjust your requirements a bit to make the available
algorithm usable.

If vou can’t find an algorithm that fits your problem, and you can’t adjust your problem to fit the
available algorithms, then you may need to write your own algorithm or modify an existing one.
Complicated algorithms often include some of the most highly studied and optimized code you
will ever encounter, so moditying them can be dithcult. (That difficulty can also make it a fun
challenge, but complicated algorithms should probably come with a sticker that says, “Modify at
your own risk.”)

If yvou do need to write your own algorithm or modify an existing one, be sure to perform extra
testing to make sure it works correctly.

Efficient

The best algorithm in the world won’t do you much good if it takes seven years to build the daily
production schedule or it it requires the users to have 3 petabytes (1 million gigabytes) ot memory
on their cell phones. To be usetul, an algorithm must satisty your speed, memory, disk space, and
other requirements.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

150 | CHAPTER7 DEVELOPMENT

This is one ot the reasons Chapter 4 said requirements must be verihable. It you don’t know ahead
of time how quickly the program must hnd a result, how can you know whether the algorithm
vou've selected is fast enough?

Note that some algorithms may be efficient enough for one purpose but not for another. For
example, suppose yvou and your friend discover a pirate treasure. Each piece of treasure has a
different value, and you want to divide the treasure as equally as possible. (In the algorithm
literature, this is called the “partition problem™; although, I like to call it the “booty division
problem™).

One algorithm for solving this problem is to simply try every possible division of the spoils and

see which combination gives you the best result. For example, if there are three pieces of treasure
labeled A, B, and C, then there are only eight possible ways to divide the treasure. Table 7-1 shows
the possible combinations.

TABLE 7-1: Possible Divisions of 3 ltems

Yau FRIEND
A, B,C

A, B C

A, C B

B A

A B, C

B A, C

C A, B

= A B, C

Notice that tor every possible division there is another division with the items swapped between you
and your friend. For example, in one division you get items A and B, and your friend gets item C.

In the swapped division, your friend gets items A and B, and you get item C. Both of the matching
divisions are equally even, so you can cut the number of possibilities you need to consider in halt it
vou ignore one of each pair of divisions. One way to do that is to arbitrarily assign item A to you.
Those sorts of tricks are what make algorithms fun!

That algorithm works well for small problems, but if the number of treasures is large, the algorithm
will take too long. If there are N items, then there are 2¥ possible ways to divide the treasure.
(2% possible ways if you arbitrarily give yourself the first item.)

For large values of N, the value 2¥ can be large, tor example, if you find a big treasure with
50 items, 2N = 1.1 x 10", If you had a computer that could examine 1 million possible treasure
divisions per second, it would take you almost 36 years to examine all the possibilities.

If you do find a larger treasure, you can’t use the simple “try every possible solution™ approach. In
that case, you need to try a difterent algorithm.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Selecting Algorithms | 151

In tact, this is known to be a provably dithcult problem, and there are no known algorithms that
can solve it exactly tor large problem sizes. For large N, you need to turn to beuristics—algorithms
that give good solutions but that don’t guarantee to give you the best solution possible.

For example, one heuristic would be to assign items randomly to you and your friend. The
odds of you randomly guessing a perfect solution would be very small, but this method would
be so fast you could pertorm several million or possibly even a billion trials and pick the best
result you stumble across. (I think this is how countries set their economic policies. They make
a bunch of random changes and, if any of them seem to work, they claim that was the plan all
along.)

Another heuristic would be to give the next item to whichever of you currently has the smaller total
value. For 50 items, that would require only 50 steps so it would be incredibly fast. The odds of you
blundering across a perfect solution would still be fairly smally although the result would often be
better than purely random guessing.

As this example shows, you need to understand how an algorithm will pertorm tor your problem
betore you decide to use it. Big O notation is a system tor studying the limiting behavior of
algorithms as the size of the problem grows large. Search the Internet tor “big O notation™ or read
an algorithms book (like the one | mentioned earlier) tor more intormation on big O notation and
algorithm complexity.

NOTE | can think of three other ways to divide the treasure perfectly evenly,
and they don't even require a computer. First, donate the treasure to a museum.
Second, auction off the treasure and split the proceeds. Finally, give it all to me
and let me worry about it!

Predictable

Some algorithms produce nice, predictable results every time they run. For example, if you search a
list of numbers, you can find the largest one every time.

Other algorithms may be less predictable. The heuristics described in the previous section can’t
always find a perfect division of treasure. In fact, a perfect division may be impossible. (Suppose you
have four treasures with values 10, 10, 20, and 30.) For the booty division problem, you can’t even

tell whether a perfect division of the spoils is possible without finding one.

Some algorithms may not produce the same results every time you run them. If you use the random
heuristic described in the previous section several times, you’ll probably get different answers each
time. In that case, it may be hard to tell if the algorithm is working correctly.

It’s also nice to know that an algorithm eventually finishes. It’s a lot easier to tell that something’s
wrong when an alg:::rithm takes twice as lnng to finish as you expect. E’ngnrithms such as the
random guessing heuristic can run indefinitely if you let them. In cases like that, you need to simply
build in a cutoff that stops the algorithm after some set amount of time and takes the best solution
tfound so far.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

152 | CHAPTER7 DEVELOPMENT

STOPPING CRITERIA

Actually, there are several ways you can stop an algorithm that might otherwise run
indefinitely. For example, you might run until you find a solution of a particular
quality. For the booty division problem, you might run until the algorithm finds a
solution in which the two piles of treasure have values differing by no more than 10
percent. Of course, youd still need to stop searching after some time period, just in
case you can’t find a solution that meets that criterion.

You can also save the best solution found after some time period and let the
algorithm continue running in the background to look for better solutions. The
application has a solution at all times, but it may gradually improve over time.

Although some algorithms such as this heuristic are inherently unpredictable, you should favor
predictable algorithms if possible. It’s much easier to debug a broken algorithm if you can reliably
reproduce incorrect results whenever you need them.

Simple

Ideally an algorithm, like any other piece of code, should be elegantly simple. Simple code is easy to
understand and easy to debug. It’s easier to modify (if you decide to peel off the “Modify at your own
risk™ sticker) and it’s easier to understand how the algorithm’s performance varies for different inputs.

Some remarkably clever algorithms are also extremely simple, whereas others are a lot more
involved. If you have a choice between a simple algorithm and a complex one that does the same job,
pick the simple one.

Prepackaged

If you can find an algorithm that is implemented inside your programming language or in a library,
use it. There’s no need to write, test, debug, and maintain your own code if someone else can do it

tor you.

Prepackaged :alg:::rithms also tend to be more thc:rr:::ughl}' studied and tested than an}'thing you have
time to write. A software vendor may spend hundreds of person-hours testing code that you would
probably write, test, and shove out the door in a few hours. Its results may not always be better than
yours, but if there is a problem you can ask the vendor to fix it instead of spending more time on it

yourself.

Sometimes, libraries can also give you better performance. A library vendor may write more highly
optimized code than you can. For example, its sorting routine might be written in assembly language
whereas your version would be written in a higher-level language such as C++, C#, or Java.

In the end it may turn out that a prepackaged solution won’t work for you either because it doesn’
have the features you need or because your specific problem allows you to greatly improve the

performance. However, it’s always worth looking for an easier solution.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Top-down Design | 153

TOP-DOWN DESIGN

If vou can’t find an algorithm to handle your situation, you need to write some code of your own.
Even if you do find an algorithm that can be useful, you’ll probably need to write some code to
prepare for the algorithm and to process the results. So how do you get from a big, intimidating task
like “design optimal routes for 300 delivery vehicles™ or “schedule the classes for 1,200 middle-
school students™ to actual working code?

One useful approach is top-down design, also called stepivise refinement. In top-down design,
vou start with a high-level statement of a problem, and you break the problem down into more
detailed pieces.

Next, you examine the pieces and break any that are too big into smaller pieces. You continue
breaking pieces into smaller pieces until you have a detailed list of the steps you need to pertorm to
solve the original problem.

As you break a task into smaller pieces, you should be on the lookout for opportunities to save some
work. If you notice that you’re performing some chore more than once (perhaps while describing
multiple main tasks), you should think about pulling that chore out and putting it in a separate
method. Then all the tasks can use the same method. That not only lets you skip writing the same
code a bunch of times, it also lets you invest extra time testing and debugging the common code
while still saving time overall.

If the main task’s description becomes too long, you should break it into shorter connected
tasks. For example, suppose you need to write a method that searches a customer database for
people who might be interested in golt equipment sales. You identify several dozen tests that
identify likely prospects: people who earn more than $50,000 per year, people who live near
golt courses, country club members, people who wear plaid shorts and sandals with spikes, and
so forth.

If the list of tests is too long, it will be hard to read the tull list of steps required to perform
the original task. In that case, you should pull the tests out, place them in a new task described
on a separate sheet of paper (or possibly several), and refer to the new task as a subtask of

the original.

For example, suppose the original method is called Promotesales. Originally, its description might

look like this:

PromoteSale ()

1. Identity customers who are likely to buy items on sale and send them e-mails, flyers, or text
messages as appropriate.

Now add some detail.

PromoteSale ()
1. For each customer:
A. If the customer is likely to buy:

I. Send e-mail, tlyer, or text message depending on the customer’s preterences

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

154 | CHAPTER7 DEVELOPMENT

Step A “If the customer is likely to buy™ will be pretty long, so create a new
IsCustomerLikelyToBuy method. Similarly, step i will be tairly complicated, so create a new
SendSaleInfo method. Now the main task looks like the tollowing.

PromoteSale ()
1 . FC!I' EEll:l'l customer:
A. IfIsCustGmerIsLik&lyTﬂEuy{}

l. SendSaleInfo ()

At this point, you need to write the IsCustomerLikelyToBuy and SendSaleInfo methods. Here's
ﬂniIEEustDm&rLikﬂlyTGBuyInEthDd.

IsCustomerLikelyToBuy ()
1. If (customer earns more than $50,000) return true.

2. 1If (customer lives within 1 mile of a golf course) return true.
3. If|
4 {

. If {customer wears plaid shorts and sandals with spikes) return true.

customer is a country club member) return true.

73. If (none of the earlier was satishied) return false.

Here’s the SendSaleInfo method.

SendSaleInfo()
1. If (customer prefers e-mail) send e-mail message.
2. It (customer prefers snail-mail) send flyer.

3. If (customer prefers text messages) send text message.

You can add other contact methods such as voicemail, telegraph, or carrier pigeon if appropriate.

This version of the SendSaleInfo method may also need some elaboration to explain how to
determine which contact method the customer pref&rs.

SendSalelnfol)

1. Use the customer’s CustomerId to look up the customer in the database’s

Custﬂmerstabk.
. Get the customer’s PreferredContactMethod value from the database record.
[t (customer prefers e-mail) send e-mail message.

. If (customer prefers snail-mail) send flyer.

nu A WM

. If {customer prefers text messages) send text message.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Programming Tips and Tricks | 155

Continue performing rounds of relinement, providing more detail for any steps that aren’t paintully
obvious, until the instructions are so detailed a hfth-grader could tollow them.

At that point, sit down and write the code. If you’ve reached a sufficient level of detail, translating
yvour instructions into code should be a mostly mechanical process.

INSUFFICIENT DETAIL

Some developers stop refining their code design when they think the list of
instructions is enough to get them started but before it provides a painful level of
detail. For example, many developers wouldn’t bother to spell out how to look up
the customer in the database and get the customer’s PreferredContactMethod
value.

That’s probably okay in this example, at least if you’re an experienced developer.
That kind of design shortcut can lead to problems, however, if a step turns out to
be harder than you originally thought it would be.

It can be disastrous if you turn the instructions over to someone else who doesn’t
have your background and some steps are harder tor that person than they would
be tor you. (I’ve worked on projects where the team lead gave a junior developer
instructions that were obvious to the lead but mystitying to the developer. Rather
than asking tor help, the developer tlailed about tor weeks without making

any progress.)

PROGRAMMING TIPS AND TRICKS

Top-down design gives you a way to turn a task statement into code, but there are still a lot of tricks
you can use to make writing code faster and easier. Other tips make it easier to test code, debug it
when a problem surfaces, and maintain the code in the long term.

The following sections describe some of my favorite tips for writing good code.

Be Alert

Writing good code can be difficult. To know if you’re writing the code correctly, you need to
completely understand what you’re trying to do, what the code actually does, and what could go
wrong. You need to know in what situations the code might execute and how those situations could
mess up your carefully laid plan. You need to ask yourself, what if an important file is locked, a
needed value isn’t found in a parameter table, or if a user can’t remember his password.

-

Keeping everything straight can be quite a challenge. You can make your life a little easier if you
write code only while you’re wide awake and alert.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

156 | CHAPTER7 DEVELOPMENT

Most people have certain times of day when they’re most alert. Some people are natural morning
people and work best in the morning. Others work better in the atternoon. Some programmers do
their best work atter midnight when the rest ot the world is asleep.

Figure out when your most effective hours are and plan to write code then. Fill out progress reports
and timesheets during less productive hours.

Write for People, Not the Computer

Probably the most important tip in this chapter is to write code tor people, not for computers. The
computer doesn’t care whether you use meaningtul names for variables, indent your code nicely,
use comments, or spell words correctly. It doesn’t care how clever you are, and it doesn’t care if
your code produces a correct result.

In fact, the computer doesn’t even read your code. Depending on your programming language
and development environment, your code must be translated one, two, or more times before the
computer can read it. All the computer wants to see is a string of Os and 1s. If you were really
writing code for the computer’s beneht, your code would look like this:

10000000
10110100
01010100
01110010
U0l1110100
0lilolool

ouououoy
Dubulool
01101000
01100001
RV RIRNEVRELY
D1101110

voooouaou
11001101
0llolooul
01101101
01100010
0oloouou

godgopoooo
golooool
01110011
go1ipoooo
01100101
0loooloo

OUUU1110
10111000
Voloooou
01100011
gu1guuuuy
01001111

U0U11111
uouobubul
01110000
01100001
01110010
0loluDll

10111010
Dloolloo
0l1lioolo
01101110
1110101l
bulooooo

DUU01110
11001101
01101111
01101110
01101110
01101101l

goououoo
001000ul
01100111
01101111
goiugouon

The reason you write code in some higher-level programming language is that Os and 1s are
contusing tor you. It would be incredibly dithcult to remember the strings of Os and 1s needed

to represent ditferent programming commands. (Although I know someone who used to have a
computer’s boot sequence memorized in binary so that he could toggle it in using switches when the

computer needed to be restarted!)

Using a higher-level language lets you tell the computer what to do in a way that you can
understand. Later, when your application is doing something wrong, it lets you trace through the
execution to see what the computer is doing and why.

Debugging and maintaining code is far more dithcult and time-consuming than writing code in
the first place. The main reason is because you know what you are trying to do when you write
code. Later when you're called upon to debug it, you might not remember exactly what the code is
supposed to do. That makes it harder to identify the ditference between what the code is supposed
to do and what it actually does, so it’s harder to fix.

Fixing a bug also has a much higher chance of adding a new bug than writing new code does, and
tor the same reason. When you’re debugging, you don’t have as clear an understanding of what the
code is supposed to do. That makes it much easier to change the code in a way that breaks it.

To make debugging and maintaining code easier, you need to write code that is clear and easy to
understand. Hopefully, whoever is eventually forced to track down a bug in your code won’t be a
violent psychopath, but you can make that person’s job a lot easier if you remember it’s that person
vou're writing for, not the computer.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Programming Tips and Tricks | 157

IT COULD BE YOU!

Always remember that the person debugging your code a year from now could be you!
After enough time has passed, there’s no way you’ll remember exactly how the code was
supposed to work. When you’re writing the code initially, it may seem obvious, but a
year or two later you’ll only have whatever clues you left for yourself in the code to go by.

You can make your job easier by writing code that’s clear and lucid, or you can
learn to hate the younger you.

When you write code, remember that you’re writing it for a possible future human reader (who
might be you) and not for the computer.

Comment First

There are a few things that most programmers instinctively avoid because they don’t feel like they're
part of writing code. One of those is writing comments.

Many programmers write the bare minimum of comments they think they can get away with and
then rush off to write more code. This is so common, in fact, that it has its own movement: just
barely good enough (JBGE). The idea is that writing lots of comments is a waste of time. Besides,
comments are usually wrong anyway, so rather than spending more time rewriting and fixing them,
you should just write better code.

You can read my rant about JBGE in the section “Code Documentation™ in Chapter 2. In this
section, I want to talk about why comments need to be revised so often.

Many programmers use one of two models tor writing comments. The first approach is to write
comments as you code. You write a loop and then put a comment on top of it. Later you realize that the
loop isn’t quite right, so you change it and then update the comment. A bit later you realize that the loop
still isn’t right, so you change it again and revise the comment once more. After 37 rounds of revisions,
you’ve either spent a huge amount of time updating the comment, or you've given up (thinking you’ll
revise the comment later) and the comment is hopelessly disconnected tfrom the final code.

The second strategy is to write all the code without comments. When you’re finished with your

37 revisions, you go back and insert the bare minimum number of comments that you think you
can get away with without getting yelled at by the lead developer. (The lead developer does the same
thing, so he doesn’t care all that much about comments anyway.)

In both of these scenarios, the problem isn’t that you have too many comments. The real problem
is that you’re trying to write comments to explain what the code does and not what it should do.
When you tweak the code, you change what it does, so you need to update the comment. That
creates a lot of work and that makes programmers reluctant to write comments,

If the code is well-written, the future reader will read the code to see what it actually does. What
that person needs is comments to explain what the program is supposed to do. Then debugging
becomes an exercise in determining where the program isn’t doing what it’s supposed to be doing.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

158 | CHAPTER7 DEVELOPMENT

One way to write comments that explain what the program is supposed to be doing is to write the
comments first. That lets you tocus on the intent of the code and not get distracted by whatever

code is sitting actually there in front of you.

It also means you don’t need to revise the comment a dozen times. The code itself might change a
dozen times, but the intent of the code better not! If it does, then you didn’t do enough planning in

the high-level and low-level design phases.

For example, consider the following C# code. (If you don’t know C# or some similar language like

C++ or Java, just focus on the comments.)

// Loop through the items in the "items" array.
for (int 1 = 0; 1 < items.Length - 1; i++)
{

[/ Pick a random spot] in the array.

int j = rand.Next (i, items.Length);

// Save item 1 in a temporary variable.

int temp = items[i];
// Copy J into 1.
items [1] = items[]];

// Copv temp into position k.
items []J] = temp;

The comments in this code explain what the code is doing, but they're mostly redundant. For
example, the first comment explains exactly what the line of code that tollows it does: through
the array. That’s certainly true, but any programmer who can’t igure that out by looking at the
looping statement itself probably shouldn’t be debugging anyone’s code.

Similarly, the other comments are just English versions ot the programming statements that follow.
The comment Copy j into i iseven a bit cryptic, and the comment Copy temp into pesition k
contains a typo, presumably because the code’s author changed the name of a variable and forgot to

update the comment,

From a stylistic point of view, the comments are also distracting. They break up the visual tlow and
make the code look cluttered and busy.

Now that you've read the code, ask yourselt, “What does it do?” Well yeah, it loops through the
array, moves values into a temporary variable, and then moves them back into the array, but why?
Does it accomplish what it was supposed to do? It’s kind of hard to tell because the comments don’t

actually tell you what the code is supposed to do.
Now consider the following version of the code:

// Randomize the arrav.
// For each spot in the array, pick a random item and swap it into that spot.
for (int i1 = 0; 1 <« items.Length - 1; i++)
{
int j = rand.Next (i, items.Length);
int temp = items[i];
items [1] = items[]];
items []j] = temp;

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Programming Tips and Tricks | 159

In this version, the comments tell you what the code is supposed to do, not what it actually does.
The hrst comment gives the code’s goal. The second comment tells how the code does it.

After you read the comments, you can read the code to see if it does what it’s supposed to do.
If vou think there’s a bug, you can step through the code in the debugger to see if it works as
advertised.

This code is less cluttered and easier to read. It doesn’t contain redundant comments that are
just English versions of the code statements. These comments also don’t need to be revised if the
developer had to modity the code while writing it.

The best part of the comment-first approach is that the comments pop out for free if you use top-
down code design. In the top-down method, you repeatedly break pieces of code into smaller and
smaller pieces until you reach the point where a trained monkey could implement the code.

At that point, put whatever comment characters are appropriate for your language in front of the
steps you've created (// tor C#, C++, or Java; * tor Visual Basicy * for COBOL, and so forth), and
drop them into the source code. Now fill in the code between the comments.

It your top-down design goes to a level ot extreme detail, you may need to pull back a bit on

the level of commenting. There’s nothing wrong with the design going all the way to the level of
explicitly giving the if-then statements you need to execute to pertorm a particular test, but that
level ot detail isn’t necessary in the comments. Only include the comments that tell what the code is
supposed to do and not the ones that repeat the actual code.

You may also need to add a tew summary comments, particularly it your development team has
rules for things like standard class and method headers, but most of the commenting work should
be done.

You may also need to add a tew comments to code that is particularly obscure and contusing.
Remember, you might be debugging this code in a year or two.

Write Self-Documenting Code

In addition to writing good comments, you can make the code easier to read if you make the code
self-documenting. Use descriptive names for classes, methods, properties, variables, and anything
else you possibly can.

One exception to this rule is looping variables. Programmers often loop through a set of values
and they use looping variables with catchy names like i or j. That’s such a common practice that
any programmer should be able to figure out what the variable means even though it doesn’t have a
descriptive name.

That doesn’ mean you should avoid descriptive names it they make sense. If you’re looping through
the rows and columns of a matrix, you can name the looping variables row and column. Similarly,
if you're looping through the pixels in an image, you can name the looping variables x and v. Those
names give the reader just a little more information and make it easier to keep track of what the
code is doing.

You can also make your code easier to understand if you don’ use magic numbers. (A magic
number is a value that just appears in the code with no explanation. For example, it might represent

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

160 | CHAPTER7 DEVELOPMENT

an error code or database connection status.) Instead of using a magic number, use a named
constant that has the same value.

Better still, if your language supports enumerated types, use them. They also give names to magic
numbers and some development environments can use them to enforce type rules. For example, suppose
you create an enumerated type named MealSizes that defines the values Large, Extraliarge, and
Colossal. Internally, the program might represent those values as 0, 1, and 2, but your code can use the
textual values. If you define a variable selected size, then your code can’t give it the value 4 because
that isn’t an allowed value. (Actually, in many programs you can weasel around that check and force
the variable to have the value 4. That would defeat the purpose of the enumerated type, so don’t do it!)

Keep It Small

Worite code in small pieces. Long pieces of code are harder to read. They require vou to keep more
information in your head at one time. They also require you to remember what was going on at the
beginning of the code when you’re reading statements much later.

For example, suppose a piece of code loops through a set of customers. For each customer, it

loops through the customer’s orders. For each order, it loops through the order’s items. Finally, tor
each item it loops through price points for that item. At some point later in the code, you’ll come
to statements that end each of those loops. For example, in C#, C++, or Java you’ll come to a }
character. If the code is short, you can look up a few lines to figure out which loop is ending. If the
loops started a few hundred lines earlier, it may be hard to decide which loop is ending,

You may also eventually come across code like the tollowing.

}

There’s nothing here to tell you which loops are ending.

THIS IS THE END

If a closing brace } is far from its corresponding opening brace [, you can make the
code easier to understand by adding a comment after it explaining which loop is
ending. For example, the tollowing statement shows how you might end a for loop
that’s looping through the X coordinates of an image.

} // Next x
If you prefer more laconic comments, you could simply use // x.

[know some programmers loathe this st}fle of comment, but if the start and end of
a 10:3[:& are far apart, this can be helpfnl.

I think many of the programmers who hate this kind of comment do so because
they are forced to use it for every closing brace. You should use it only when it
helps, not make an annoying rule that drives programmers crazy.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Programming Tips and Tricks | 161

If a piece of code becomes too long, break it into smaller pieces. Exactly how long is “too long”
varies depending on what you’re doing. Many developers used to break up methods that didn’t fit
on a one-page printout. A more recent tree-friendly rule of thumb is to break up a method it it won’t
fit on your computer’s screen all at one time. (This may be why no one programs on smartphones.
You’d have thousands of 10-line methods.)

AVOIDING BREAKUPS

Some complicated algorithms may be contusing enough that it’s hard to keep
everything they do in mind all at once, but splitting them can ruin performance. Or
there may be no good place to split them because all the pieces are interrelated. In
those cases, you may be stuck with a long chunk of code.

Sometimes, a little extra documentation can act as a roadmap to help you keep
track of what the code is doing. (This should be documentation in a separate hle,
not just more comments, which would make the code even longer.)

You can also refer to external documentation inside the comments. For example,

if your code uses Newton’s method for finding the roots of a polynomial, don’t
embed a five-page essay in the comments. Instead add the following comment to the
code and move on to something more productive.

// Use Newton's method to find the equation’s roots. See:
J// http://en.wikipedia.org/wiki/Newton’'s method

In general, if it’s hard to keep everything a method does in mind all at once, consider splitting it
apart.

Stay Focused

Each class should represent a single concept that’s intuitively easy to understand. If you can’t
describe a class in a single sentence, then it’s probably trying to do too much, and you should
consider splitting it into several related classes.

For example, suppose you’re writing an application to schedule seminars for a conference and to

let people sign up for them. You probably shouldn’t have a single class to represent attendees and
presenters. Attendees and presenters may have a lot in common (they both have names, addresses,
phone numbers, and e-mail addresses), but conceptually they are very different. Instead of creating a
single AttendeeOrPresenter class to represent both kinds of person, make separate Attendee and
Presenter classes. You can make them inherit from a common Person parent class, so you don’t
have to write the same name and address code twice, but making one mega-class will only confuse
other developers. (Besides, the name AttendeeOrPresenter sounds wishy-washy.)

Just as a class should represent a single intuitive concept, a method should have a single clear
purpose. Don’t write methods that perform multiple unrelated tasks. Don’t write a method called
PrintSalesReportAndFetchStockPrices. The name might be nicely descriptive, but it’s also
cumbersome, so it’s a hint that the method might not have a single clear purpose.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

162 | CHAPTER7 DEVELOPMENT

One of my favorite examples of this was the Line method in earlier versions of Visual Basic. As you
can probably guess, that method drew a line on a form or picture box. What’s not obvious trom
the name is that it could also draw a box if you added the parameter & to the method call. I'm sure
there was some implementation reason why this method drew boxes as well as lines, but seriously?
A method named Line should draw lines not boxes.

Even it two tasks are related, it’s often better to put them in separate methods so that you can
invoke them separately if necessary.

Avoid Side Effects

A side effect 1s an unexpected result of a method call. For example, suppose you write a
ValidateLogin method that checks a username and passwnrd in the database to see if the
combination is valid. Oh, and by the way, it also leaves the application connected to the database.
Leaving the database open is a side effect that isn’t obvious from the name of the ValidateLogin
method.

Side eftects prevent a programmer from completely understanding what the application is doing.
Because understanding the code is critical to producing high-quality results, avoid writing methods
with side eftects.

Sometimes, a method may need to perform some action that is secondary to its main purpose, such
as opening the database betore checking a username/password pair. There are several ways you can
remove the hidden side ettects.

First, you can make the side ettect explicit in the method’s name. For example, you could call
this method OpenDatabaseZndLogin. That’s not an ideal solution because the method 1sn’t
performing one well-tocused task, but it’s better than having unexpected side effects. (Any
time you have “And” or “Or” in a method name, you may be trying to make the method do
too much.)

Second, the ValidateLogin method could close the database betore it returns. That removes the
hidden side effect; although it may reduce performance because you may want the database to be
open for use by other methods.

Third, you could move the database opening code into a new method called openDatabase. The
program would need to call openDatabase separatel}r before it called validateLogin, but the
process would be casy to understand.

Fourth, you could create an OpenDatabase method as before and make that method keep
track of whether the database was already open. If the database is open, the method
wouldn’t open it again. Then you could make every method that needs the database
{including ValidateLogin) call OpenDatabase. Methods such as VvalidateLogin would
encapsulate the call to OpenDatabase so you wouldn’t need to think about it when you called
ValidateLogin. T here’s still some extra work going on behind the scenes that you may not
know about, but with this approach you don’t need to keep track ot whether the database is
open or closed.

[t may take a little extra work to remove side etfects trom a method, but it’s worth it to make the
code that calls the method easier to understand.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Programming Tips and Tricks | 163

Validate Results

Murphy’s law states, “Anything that can go wrong will go wrong.” By that logic, you should always
assume that your calculations will fail. Maybe not every single time, but sooner or later they will

PI"DCI uce incorrect I'E!ELlltSi

Sometimes, the input data will be wrong. It may be missing or come in an incorrect format. Other
times your calculations will be flawed. Values may not be correctly calculated or the results may be

formatted incorrectly.

To catch these problems as soon as possible, you should add validation code to your methods. The
validation code should look for trouble all over the place. It should examine the input data to make
sure it’s correct, and it should verity that the result your code produces is right. It can even verify
that calculations are proceeding correctly in the middle of the calculation.

The main tool for validating code is the assertion. An assertion is a statement about the program
and its data that is supposed to be true. It it isn’t, the assertion throws an exception to tell you that

something is wrong,.

EXCEPTIONAL TERMINOLOGY

The term exception is programmer-speak for an unexpected error caused by the
code. Exceptions can be caused by all sorts of situations such as trying to open
a file that doesn’t exist, trying to open a file that is locked by another program,
performing an arithmetic calculation that divides by zero, using up all the
computer’s memory, or trying to use an object that doesn’t exist.

When an exception occurs, the program’s execution is interrupted. If you have
an error handler in place, it can examine the exception information to figure out
what went wrong and it can try to hx things. For example, it might tell the user
to close the application that has a file locked and then it could try to open the
file again.

It no error handler is ready to catch the exception, the program crashes.

For example, suppose you’re writing a method to list customer orders sorted by their total cost.
When the method starts, you could assert that the list contains at least two orders. You could also

iDDp thrc::ugh the list and assert that EVELY order has a total cost greater than zero.

After you sort the 1i5t? you could If:-crp thmugh the orders to verif}f that the cost of each order is at

least as 1arge as the cost of the one before it.

One type of assertion that can sometimes be useful is an invariant. An invariant is a state of the
program and its data that should remain unchanged over some period of time.

For example, suppose you’re working on a work scheduling application that defines an Employee
class. You might decide that all Emplovee objects must always have at least 40 hours of work in any

given week. (Although some of those hours might be coded as vacation.)

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

164 | CHAPTER7 DEVELOPMENT

Here the invariant condition is that the Employee object must have at least 40 hours of worked
assigned to it. You could add assertions to the object’s properties and methods to periodically verity
that the invariant is still true. (Ideally, the class would provide only a tew public properties and
methods that could change the Employee’s work schedule and those would verify the invariant, at
least before and after they do their work.)

TIMELY ASSERTIONS

Most programming languages have a method for conditional compilation. By
setting a variable or flipping a switch, you can indicate that certain parts of the
code shouldn’ be compiled into the executable result. For example, the following
code shows some validation code in C#.

#if DEBUG 1
// Validate the sorted order data.

#endif

The code between the #if and #endif directives is compiled only it the debugging
symbol DEBUG 1 is defined. If that symbol isn’t defined, then the validation code 1s
ignored by the compiler.

You can use techniques such as this one to add tons of validation code to the
application. While you are testing and debugging the application, you can define
the symbol DEBUG 1 (and any other debugging symbols) so the testing code is
compiled. When you’re ready to release the program, you can remove the debugging
symbols so that the program runs faster for the customers.

Later, if you discover a bug, you can redefine the debugging symbols to restore the
testing code to hunt for the bug.

Some languages such as C# also have built-in conditional compilation for
assertions. For example, the following statement asserts that an order’s TotalCost
value is greater than 0.

Debug.lAssert (order.TotalCost > 0);

The compiler automatically includes this statement in debug builds and removes it
from release builds.

Assertions and other validation code can make it easy to find bugs right after they are written when
they're casest to fix. Unfortunately, it’s hard to believe the code you just wrote isn’t perfect. After all,
you just spent hours slaving over a hot keyboard, pounding away with no breaks (maybe just one to
refresh your coffee). The code is still fresh in your mind, so you know exactly how it works (or at
least how you think it works). Obviously, there isn’t bug in it or you would have already fixed it!

That thinking makes it hard for most programmers to write validation code. They just assume it
ISN’t necessary.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Programming Tips and Tricks | 165

However, bugs do occur, so obviously they must be lurking in some ot the code that was just
written. It only you could convince programmers to add validation code to their methods, you might
catch the bugs betore they become established.

One way to encourage programmers to write validation code is to have them write it betore
writing the rest of a method’s code. (This is similar to the way you can often get better comments
if you write them before you write the code.) Writing the validation code first ensures that

it happens.

This also has the advantage that you probably don’t yet know exactly how the final code will work.
You don’t have it all in your head whispering seductively, “You did a great job writing me. There’s
really no need to validate the results.” You alse don’t have preconceptions about how the code
works, so you won’t be influenced in how you write the validation code. You can look for incorrect
results without making assumptions about where errors are impossible.

Practice Offensive Programming

The idea behind defensive programming is to make code work no matter what kind of garbage is
pﬂSSEd into it for data. The code should work and prcrcfuce some kind of result no matter what.

For example, consider the following Factorial function written in C#. (In case you don’t
remember, the factorial of a number N is written N! and equals 1 x2 x 3 x ... xN.)

public int Factorial (int number)

{

int result = 1:
for (int 1 = 2; 1 <= number; 1+4+4) result *= 1:
return result;

}

This code initializes the variable result to the value 1. It then multiplies that value by 2, 3, 4, and
so on up to the number passed into the method as a parameter. It then returns result.

This code works well in most cases. The code even works for strange values of the input
parameter number. For example, if number is 0 or 1, the method sets result to 1, the loop does
nothing, and the method returns the value 1. That happens to be correct because by definition

0!'=1and 1! = 1.

If the parameter number is negative, the code also sets result to 1, the loop does nothing, and the
method returns 1.

In fact, due to a quirk in the way C# handles integer overflow, this method even returns a value

if number is really large. If number is 100, the loop causes result to overflow. The program sets
result equal to 0, ignores the overflow, and continues merrily crunching away, When it’s finished, it
returns the value 0.

This is traditional detensive programming in action. No matter what value you pass into the
method, it continues running. It may not always return a meaningful result, but it doesn’t crash
either.

Untortunately this approach also hides errors. If the program is trying to calculate 100!, it’s
probably doing something wrong. At a minimum, it probably doesn’t want to get the value 0.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

166 | CHAPTER7 DEVELOPMENT

A better approach is to make the Factorial method throw a temper tantrum if its input is invalid.
That way you know something is wrong and you can hx it. I call this, offensive programming. It
something offends the code, it makes a big deal out of it.

The following code shows an offensive version of the Factorial method:

public int Factorial (int number)

{
Debug.Assert (number == 0);
checked
{
int result = 1;
for {(int 1 = 2;: 1 <= number; 1++) result *= 1:
return result:
'
}

The code begins with an assertion that verihes that the input parameter is at least 0.

The method includes the rest of its code in a checked block. The checked keyword tells C# to not
ignore integer overtlow and throw an exception instead. That takes care of cases in which the input
parameter is too big.

It the program passes the new version ot the Factorial tunction an invalid parameter, you'll know
about it right away so you can hx it.

Use Exceptions

When a method has a problem, there are a couple ways to tell the program that something’s wrong.
Two of the most common methods are throwing an exception and passing an error code back to the
calling code.

For example, the Factorial method shown in the previous section throws an exception it there’s an
error. The call to Debug.Assert throws an exception if its condition is false. The checked block
throws an exception if the calculations cause integer overtlow.

As mentioned earlier in this chapter, an exception interrupts the program’s execution and forces the
code to take action. If you don’t have any error handling code in place, the program crashes. That
means a lazy programmer can’t ignore a possible exception. If a method such as Pactorial might
throw an exception, the code must be prepared to handle it somehow.

In contrast, suppose the Factorial method indicated an error by returning an error code. For
example, when passed the number =300, it might return the value —=1. The factorial of a number is
never negative, so the value =1 would indicate there is a problem.

The trouble with this approach is the program could ignore the error code. In that case, the
program might end up displaying the bogus value -1 to the user or using that value in some other
calculation. The result will be gibberish that is at best unhelptul and at worst misleading and
confusing.

In general it’s better to throw an exception to indicate an error instead of returning an error code.
That way the program can’t ignore a potentially contfusing situation.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Programming Tips and Tricks | 167

Write Exception Handers First

Now that you're using assertions and exceptions to indicate errors, the code that calls your method
needs to use exception handling to deal with those exceptions.

Unfortunately, error handlers are a bit like comments in the sense that many programmers find
them boring and don’t like to write them. They’re also a bit like validation code because it’s easy to
assume that they’re not necessary because you know the code works.

One way to create better error handlers is to follow the same strategy you can use when writing
comments and validation code: Do it first. When you start writing a method, paste in all the
comments that you got from tc::p—cl:::wn dr:sign, add code to validate the inputs and verif}f the
outputs, and then wrap error handling code around the whole thing.

First, make the error handling code look for exceptions that you expect to happen occasionally and
that you can do something about (like trying to open a locked file).

Next, add code that looks for other expected exceptions about which you can’t do anything except
complain to the user. That code should restate any exceptions in terms the user can understand. For
example, instead of telling the user, “Arithmetic operation resulted in an overtlow,” you can present
a more meaningtul message like, “All orders must include at least 1 item.”

Don‘t Repeat Code

If vou find that you’re writing the same (or nearly the same) piece of code more than once, consider
moving it into a separate method that you can call from multiple places. That obviously saves you
the time needed to write the code more than once. More important, it lets you debug and maintain
the code in a single place.

Later it you need to modify the code for some reason, you need to make the change only in one
method. If the code were duplicated, you would need to update it in every place it occurred. It you
torgot to update it in one place, the different copies of the code would be out of synch and that can
lead to some extremely contusing bugs. (Yes, I speak from experience here.)

Defer Optimization

One of my tavorite rules of programming is:

First make it work. Then make it faster if necessary.

Highly optimized code can be a lot of fun to write, but it can also be very confusing. That means it takes
longer to write and test. It’s also harder to read, so it’s harder to debug and hx if there is a problem.

Meanwhile, even the least optimized code is usually fast enough to get the job done. It you're
displaying a list of 10 choices to the user, it doesn’ matter if it takes 10 or 12 milliseconds to
display. The user is going to stare at the choices for 3 or 4 seconds anyway, so it’s not worth
spending a lot of extra programming effort to shave 0.05 percent off the total time.

To program as efficiently as possible, write code in the most straighttorward way you can, even it
it’s not the fastest way you can imagine. After you get the code working, you can decide whether it is
so slow that it requires optimization.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

168 | CHAPTER7 DEVELOPMENT

OPTIMIZATION OVERLOAD

I’ve never worked on a project that failed because the code was too slow. I've
worked on a couple projects that were initially too slow and we rewrote their
performance bottlenecks to bring them up to an acceptable speed. It really wasn’

all that hard.

In contrast, I've worked on a couple projects that failed because their design was
too complicated. People spent so much time trying to optimize the design and come
up with the most ethcient approach possible that the code was too complicated to
implement and debug,

I’ll say it again: First make it work. Then make it faster if necessary.

If you do discover that the program isn’t running fast enough, take some time to determine where
performance improvements will give you the most beneht.

Typically 80 percent of a program’s time is spent in 10 percent of the code. (Or 20 percent is spent
in 10 percent of the code, or something. The idea is, the program spends most of its time executing
a small fraction of the code.) Time you spend optimizing the 80 percent that’s already fast enough
is time that would be better spent on the slow 20 percent. (Frankly, youd be better off just wasting
that time by talking around the water cooler eating donuts. Time you spend messing about inside
the 80 percent of the code that’s already working fine can only make that code more confusing and
harder to debug and maintain over time.)

Before you start ripping the code apart, use a profiler to see exactly where the problem code is. Then
attack 4:}111}' the prx::biﬁm and not the whole program. (So you don’t mess up the rest of the code with
friendly fire.)

PROFILERS PROFILED

In case you haven’t used one, a profiler is a program that monitors the progress of a
program while it runs to identify the parts that are slow, that use the most memory,
or that otherwise might be bottlenecks. Different profilers work in different ways.
For example, some add code (called instrumentation) to your program to record the
number of times every method is called and the amount of time the program spends
in each method.

Profilers are very handy for tracking performance problems. I worked on one program
that was taking approximately 20 minutes to load its data when it started. The project
manager refused to buy a profiler (“real programmers don’t need them™) and had a
number of theories about where in the data processing algorithms the bottlenecks were.

I snuck off into my office and installed a profiler for a 30-day free trial. Within a
few hours, I had discovered that the problem wasn’t in the main algorithms art all.
The problem was actually in some fairly trivial string-processing code. Basically, the

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Summary | 169

program was going back to a database hundreds of times to re-tetch values that it
had already loaded. I built a simple table to keep track of the values that had already
been fetched and cut the program’s startup time from 20 minutes to under 4.

If I hadn’t used the profiler, I would probably have wasted a week or two and
only shaved a minute or so off of the startup time. (After the fact the project lead
admitted that, okay, perhaps a profiler was a good idea after all.)

Before you start optimizing code, make sure it works properly. Then if you do find that performance
is insuftficient, carefully analyze the problem (using a profiler if you can) so that you don’t waste time
optimizing code that is already fast enough.

SUMMARY

Most programmers love to program, but they can’t do a good job without the proper tools. If you
don’t have the right hardware, software, and network support, writing good code is slow and
trustrating. That leads to distraction and more bugs. Writing good code also requires debugging,
testing, and profiling tools. Depending on the development environment, you may also need code
formatting and refactoring tools.

Before you starting writing code, make sure you have the tools you need to do so eftectively. If you
don’t write code, make sure those who do get the tools they need.

Even if you’re using all the proper tools, writing good code isn’t guaranteed. There are dozens or
perhaps hundreds of tips and tricks you can use to make your code safer. This chapter describes a
tew of my favorites. By using those techniques, you can make your programs more reliable, easier to
debug, and easier to modify in the future.

Untortunately, even the best program can still contain bugs. In fact, it’s common in software
engineering to assume that every nontrivial program contains some bugs. The only questions are,
“How many bugs?” and “How often will the bugs affect the users?”

Testing lets you find and fix as many bugs as possible. If you test a program effectively, you can
eventually reduce the number and severity of the remaining bugs so that the program is still usable.
(Just as if you squash enough cockroaches, the rest eventually learn to hide better.)

The next chapter explains sottware testing. It describes techniques you can use to iind bugs and
estimate the number ot bugs that remain in an application.

EXERCISES

1.

The greatest common divisor (GCD) of two integers is the largest integer that evenly divides
them both. For example, the GCD of 84 and 36 is 12 because 12 is the largest integer

that evenly divides both 84 and 36. You can learn more about the GCD and the Euclidean
algorithm, which you can find at en.wikipedia.org/wiki/Euclidean algorithm.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.

Copyright © 2015. Wrox. All rights reserved.

170 | CHAPTER7 DEVELOPMENT

Knowing that background, what's wrong with the comments in the following code? Rewrite
the comments so that they are more effective. (Don’t worry about the code if you can't
understand it. Just focus on the comments.) (Hint: It should take you only a few seconds to fix
these comments. Don’t make a career out of it.)

// Use Buclid's algorithm to calculate the GCD.
private long GCD(long a, long b)
{

// Get the absolute walue of a and b.
Math.Abs (a) :
Math.2bs (b) :

(= |

b

// Repeat until we're done.
Far [z ¢)

{

// Set remainder to the remainder of a / b.

long remainder = a % b;

// If remainder is 0, we're done. Return b.
if (remainder == 0} return b:

// S8et a = b and b = remainder.

a = b:

b = remainder:

bi
}

2. Why might you end up with the bad comments shown in the previous code?

How could you add validation code to the method shown in Exercise 17? (If you don’t know
how to write the validation code in C#, just indicate where it should be and what it should do.)

4. How could you apply offensive programming to the modified code you wrote for Exercise 37
Should you add error handling to the modified code you wrote for Exercise 47

6. The following code shows one way to swap the values in two integers a and b. The ™ operator
takes the “exclusive or” (XOR) of the two values. The comments to the right explain how this
method works.

// Swap a and b. Let A and B be the original wvalues.
b -a * b; f/b=2"B

a=a ™ b; f//fa=2"(a"B) =(a"R “"B=2EB
b=a” b; /f b=B"* (&a"B) = (B"B) “A=1

This is a clever piece of code. It lets you swap two values without needing to waste memory
for a temporary variable. So why isn't it good code? Write an improved version.

/. Using top-down design, write the highest level of instructions that you would use to tell
someone how to drive your car to the nearest supermarket. (Keep it at a very high level.) List
any assumptions you make.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Summary | 171

» WHAT YOU LEARNED IN THIS CHAPTER
» Use the right tools:

> Fast development hardware and a fast Internet connection
» A good development environment and source code formatters (if necessary)
> Source code control
» Proflers and static analysis tools
» Testing and refactoring tools
» Training

» Select algorithms that are etfective, ethcient, predictable, simple and (it possible)
prepackaged.

Use top-down design to hll in code details.
Programming tips:
» Program when you’re most alert.

» Write code tor people, not tor the computer.

Y

Write comments, validation code, and exception handlers before you start writing the
actual code.

Use descriptive names, named constants, and enumerated types.
Break long methods into manageable pieces.

Make each class represent a single concept that’s intuitively easy to understand.

Y ¥y Y ¥

Keep methods tightly focused on a single task and without side etfects.
Program ottensively to expose bugs as quickly as possible.

Signal problems with exceptions instead of error codes.

Y v Y

If you’re writing the same piece of code for a second time, extract it into a method
that you can call repeatedly.

Y

Only optimize atter you sure it’s necessary. Then use a prohiler to hind the code that
actually needs optimization.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

Stephens, Rod. Beginning Software Engineering (1st Edition). Somerset, US: Wrox, 2015. ProQuest ebrary. Web. 17 November 2015.
Copyright © 2015. Wrox. All rights reserved.

